更高的转化,还可以节省运营人力,而且模型可以不断学习优化。

在这个过程初期,需要进行AB实验,以确保算法的效果较人工有更好的转化。

四、AI促进产品智能

产品智能常见的包括三个典型的场景:一是个性化推荐,二是合规性审核,三是产品自动化优化。

个性化推荐,大家应该都非常熟悉,比如我们打开淘宝或京东时,首页推荐的商品大概率是我们有过一定关系的,比如自己浏览过、购买过等,或者系统判断我们可能会喜欢的商品。

合规性审核,对于UGC的平台,内容的合规性关于一个产品甚至是企业的生死存亡,用户发布涉黄、涉政、涉赌、毒等,都需要进行安全审查,而对于像抖音这种日活七八亿的国民级App,每时每刻都有大量视频内容发布,纯靠人工审核需要多少人力资源呢。

这个过程其实就是借助了AI的能力,系统无法识别的才会提交至人工审核。同时也会作为Badcase用来优化算法模型。

产品智能优化,当我们浏览旅游产品时,如果产品首页头图的非常美观,用户点击的意愿会相应提升,相反对于首图美感度差的产品,用户不会去点甚至反感。

借助图像识别的算法模型,对海量的图片数据进行挖掘分析,针对每个商品的图片进行美观度打分,从而实现产品头图的智能选择。除此之外,对于用户评价的文本进行NLP标签提取,给到新进浏览者更简单、快捷的评价标签。

五、总结

数据产品经理,除了关注当下数据在分析决策、数据化运营等方面的应用外,也要着眼于让数据价值发挥的更加淋漓尽致的方向,比如大数据和AI能力的结合。

虽然现在阶段是数据产品经理向左,AI产品经理向右,但终究还是只有把两者更好地结合起来,才能把数据原油的价值榨取得更加充分。

#专栏作家#

数据干饭人,微信号公众号:数据干饭人,人人都是产品经理专栏作家。专注数据中台产品领域,覆盖开发套件,数据资产与数据治理,BI与数据可视化,精准营销平台等数据产品。擅长大数据解决方案规划与产品方案设计。

本文原创发布于人人都是产品经理,未经作者许可,禁止转载。

题图来自Unsplash,基于CC0协议

相关推荐