ff12 英文版向日葵要什么材料

2023-03-20 16:56 44次浏览 攻略

翻译|参与AI技术大本营(RGZNAI 100)| JOE,赵燕2000年初,Robbie Allen在写关于互联网和编程的书时被深深打动。

他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,YouTube还不是很普遍,Quora、 Twitter和播客同样用者甚少。

在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!

为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,你将会对人工智能和机器学习有一个基本的认知。

这些资源内容安排如下:知名研究者,研究机构,视频课程,YouTube,博客,媒体作家,书籍,Quora主题栏,Reddit,Github库,播客, 实事通讯媒体、会议、论文。

如果你也有好的资源是这里没有列出的,欢迎评论区一起交流!

研究者

大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。

Sebastian Thrun

个人官网:

Wikipedia:

Twitter:

Google Scholar:

;hl=en&oi=ao

Quora:

Reddit AMA:

Yann LeCun

个人官网:

Wikipedia:

Twitter:

Google Scholar:

;hl=en

Quora:

Reddit AMA:

Nando de Freitas

个人官网:

Wikipedia:

Twitter:

Google Scholar:

;hl=en

Reddit AMA:

Andrew Ng

个人官网:

Wikipedia:

Twitter:

Google Scholar:

Quora:

;

Reddit AMA:

Daphne Koller

个人官网:

Wikipedia:

Twitter:

Google Scholar:

r=5Iqe53IAAAAJ

Quora:

Quora Session:

Adam Coates

个人官网:

Twitter:

Google Scholar:

r=bLUllHEAAAAJ&hl=en"

Reddit AMA:

Jürgen Schmidhuber

个人官网:

Wikipedia:

Google Scholar:

r=gLnCTgIAAAAJ&hl=en

Reddit AMA:

Geoffrey Hinton

个人官网:

Wikipedia:

Google Scholar:

Reddit AMA:

Terry Sejnowski

个人官网:

Wikipedia:

Twitter:

Google Scholar:

r=m1qAiOUAAAAJ&hl=en

Reddit AMA:

Michael Jordan

个人官网:

Wikipedia:

Google Scholar:

r=yxUduqMAAAAJ&hl=en"

Reddit AMA:

Peter Norvig

个人官网:

Wikipedia:

Google Scholar:

r=Ol0vcWgAAAAJ&hl=en

Reddit AMA:

Yoshua Bengio

个人官网:

Wikipedia:

Google Scholar:

r=kukA0LcAAAAJ&hl=en

Quora:

Reddit AMA:

Ina Goodfellow

个人官网:

Wikipedia:

Twitter:

Google Scholar:

r=iYN86KEAAAAJ&hl=en

Quora:

Quora Session:

Andrej Karpathy

个人官网:

Twitter:

Google Scholar:

r=l8WuQJgAAAAJ&hl=en

Quora:

Quora Session:

Richard Socher

个人官网:

Twitter:

Google Scholar:

r=FaOcyfMAAAAJ&hl=en

Interview:

Demis Hassabis

个人官网:

Wikipedia:

Twitter:

Google Scholar:

r=dYpPMQEAAAAJ&hl=en

Interview:

Christopher Manning

个人官网:

Twitter:

Google Scholar:

r=1zmDOdwAAAAJ&hl=en"

Fei-Fei Li

个人官网:

Wikipedia:

Twitter:

Google Scholar:

r=1zmDOdwAAAAJ&hl=en"

Ted Talk:

François Chollet

个人官网:

r=VfYhf2wAAAAJ&hl=en

Twitter:

Google Scholar:

r=VfYhf2wAAAAJ&hl=en

Quora:

Quora Session:

Dan Jurafsky

个人官网:

Wikipedia:

Twitter:

Google Scholar:

r=uZg9l58AAAAJ&hl=en

Oren Etzioni

个人官网:

Wikipedia:

Twitter:

Google Scholar:

r=XF6Yk98AAAAJ&hl=en

Quora:

r

Reddit AMA:

机构

网络上有大量的知名机构致力于推进人工智能领域的研究和发展。

以下列出的是同时拥有官方网站/博客和推特账号的机构。

OpenAI

官网:

Twitter:

DeepMind

官网:

Twitter:

Google Research

官网:

Twitter:

AWS AI

官网:

Twitter:

Facebook AI Research

官网:

Microsoft Research

官网:

Twitter:

Baidu Research

官网:

Twitter:

IntelAI

官网:

Twitter:

AI2

官网:

Twitter:

Partnership on AI

官网:

Twitter:

视频课程

以下列出的是一些免费的视频课程和教程。

Coursera — Machine Learning (Andrew Ng):

Coursera — Neural Networks for Machine Learning (Geoffrey Hinton):

Udacity — Intro to Machine Learning (Sebastian Thrun):

Udacity — Machine Learning (Georgia Tech):

Udacity — Deep Learning (Vincent Vanhoucke):

Machine Learning (mathematicalmonk):

Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):

Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016) :

;list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

(class link):

Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017) :

(class link):

Oxford Deep NLP 2017 (Phil Blunsom et al.):

Reinforcement Learning (David Silver):

Practical Machine Learning Tutorial with Python (sentdex):

;v=OGxgnH8y2NM

YouTube

以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:

sentdex (225K subscribers, 21M views):

Artificial Intelligence A.I. (7M views):

Siraj Raval (140K subscribers, 5M views):

Two Minute Papers (60K subscribers, 3.3M views):

Dee (42K subscribers, 1.7M views):

Data School (37K subscribers, 1.8M views):

Machine Learning Recipes with Josh Gordon (324K views):

Artificial Intelligence — Topic (10K subscribers):

Allen Institute for Artificial Intelligence (AI2) subscribers, 69K views):

Machine Learning at Berkeley (634 subscribers, 48K views):

Understanding Machine Learning — Shai Ben-David (973 subscribers, 43K views):

Machine Learning TV (455 subscribers, 11K views):

博客

Andrej Karpathy

博客:

Twitter:

i am trask

博客:

Twitter:

Christopher Olah

博客:

Twitter:

Top Bots

博客:

Twitter:

WildML

博客:

Twitter:

Distill

博客:

Twitter:

Machine Learning Mastery

博客:

Twitter:

FastML

博客:

Twitter:

Adventures in NI

博客:

Twitter:

Sebastian Ruder

博客:

Twitter:

Unsupervised Methods

博客:

Twitter:

Explosion

博客:

Twitter:

Tim Dettwers

博客:

Twitter:

When trees fall…

博客:

Twitter:

ML@B

博客:

Twitter:

媒体作家

以下是一些人工智能领域方向顶尖的媒体作家。

Robbie Allen:

Erik P.M. Vermeulen:

Frank Chen:

azeem:

Sam DeBrule:

Derrick Harris:

Yitaek Hwang:

samim:

Paul Boutin:

Mariya Yao:

Rob May:

Avinash Hindupur:

书籍

以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。

机器学习

Understanding Machine Learning From Theory to Algorithms:

Machine Learning Yearning:

A Course in Machine Learning:

Machine Learning:

Neural Networks and Deep Learning:

Deep Learning Book:

Reinforcement Learning: An Introduction:

Reinforcement Learning:

自然语言处理

Speech and Language Processing (3rd ed. draft):

slp3/

Natural Language Processing with Python:

An Introduction to Information Retrieval:

数学

Introduction to Statistical Thought:

Introduction to Bayesian Statistics:

Introduction to Probability:

Think Stats: Probability and Statistics for Python programmers:

The Probability and Statistics Cookbook:

Linear Algebra:

Linear Algebra Done Wrong:

Linear Algebra, Theory And Applications:

Mathematics for Computer Science:

Calculus:

Calculus I for Computer Science and Statistics Students:

Quora

Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。

Computer-Science followers):

Machine-Learning followers):

Artificial-Intelligence (635K followers):

Deep-Learning (167K followers):

Natural-Language-Processing (155K followers):

Classification-machine-learning (119K followers):

Artificial-General-Intelligence (82K followers)

Convolutional-Neural-Networks-CNNs (25K followers):

Computational-Linguistics (23K followers):

Recurrent-Neural-Networks followers):

Reddit

Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。

/r/MachineLearning (111K readers):

/r/robotics/ (43K readers):

/r/artificial (35K readers):

/r/datascience (34K readers):

/r/learnmachinelearning (11K readers):

/r/computervision (11K readers):

/r/MLQuestions (8K readers):

/r/LanguageTechnology (7K readers):

/r/mlclass (4K readers):

/r/mlpapers (4K readers):

Github

人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。

Machine Learning (6K repos):

;q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93

Deep Learning (3K repos):

;type=Repositories

Tensorflow (2K repos):

;type=Repositories

Neural Network (1K repos):

;type=Repositories

NLP (1K repos):

;q=topic%3Anlp&type=Repositories

播客

对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。

ConcerningAI

官网:

iTunes:

This Week in Machine Learning and AI

官网:

iTunes:

The AI Podcast

官网:

iTunes:

Data Skeptic

官网:

iTunes:

Linear Digressions

官网:

iTunes:

?mt=2

Partially Dervative

官网:

iTunes:

O'Reilly Data Show

官网:

iTunes:

Learning Machines 101

官网:

iTunes:

The Talking Machines

官网:

iTunes:

Artificial Intelligence in Industry

官网:

iTunes:

Machine Learning Guide

官网

时事通讯媒体

如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。

The Exponential View:

AI Weekly:

Deep Hunt:

O’Reilly Artificial Intelligence Newsletter:

Machine Learning Weekly:

Data Science Weekly Newsletter:

Machine Learnings:

Artificial Intelligence News:

When trees fall…:

WildML:

Inside AI:

Kurzweil AI:

Import AI:

The Wild Week in AI:

Deep Learning Weekly:

Data Science Weekly:

KDnuggets Newsletter:

会议

随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。

学术会议

NIPS (Neural Information Processing Systems):

ICML (International Conference on Machine Learning):

KDD (Knowledge Discovery and Data Mining):

ICLR (International Conference on Learning Representations):

ACL (Association for Computational Linguistics):

EMNLP (Empirical Methods in Natural Language Processing):

CVPR (Computer Vision and PatternRecognition):

ICCF(InternationalConferenceonComputerVision):

专业会议

O’Reilly Artificial Intelligence Conference:

Machine Learning Conference (MLConf):

AI Expo (North America, Europe, World):

AI Summit:

AI Conference:

论文

arXiv.org上特定领域论文集:

Artificial Intelligence:

Learning (Computer Science):

Machine Learning (Stats):

NLP:

Computer Vision:

Semantic Scholar搜索结果:

Neural Networks (179K results):

;sort=relevance&ae=false

Machine Learning (94K results):

;sort=relevance&ae=false

Natural Language (62K results):

;sort=relevance&ae=false

Computer Vision (55K results):

;sort=relevance&ae=false

Deep Learning (24K results):

;sort=relevance&ae=false

此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。

作者:Robbie Allen

原文:

相关推荐