翻译|参与AI技术大本营(RGZNAI 100)| JOE,赵燕2000年初,Robbie Allen在写关于互联网和编程的书时被深深打动。
他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,YouTube还不是很普遍,Quora、 Twitter和播客同样用者甚少。
在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!
为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,你将会对人工智能和机器学习有一个基本的认知。
这些资源内容安排如下:知名研究者,研究机构,视频课程,YouTube,博客,媒体作家,书籍,Quora主题栏,Reddit,Github库,播客, 实事通讯媒体、会议、论文。
如果你也有好的资源是这里没有列出的,欢迎评论区一起交流!
研究者
大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。
Sebastian Thrun
个人官网:
Wikipedia:
Twitter:
Google Scholar:
;hl=en&oi=ao
Quora:
Reddit AMA:
Yann LeCun
个人官网:
Wikipedia:
Twitter:
Google Scholar:
;hl=en
Quora:
Reddit AMA:
Nando de Freitas
个人官网:
Wikipedia:
Twitter:
Google Scholar:
;hl=en
Reddit AMA:
Andrew Ng
个人官网:
Wikipedia:
Twitter:
Google Scholar:
Quora:
;
Reddit AMA:
Daphne Koller
个人官网:
Wikipedia:
Twitter:
Google Scholar:
r=5Iqe53IAAAAJ
Quora:
Quora Session:
Adam Coates
个人官网:
Twitter:
Google Scholar:
r=bLUllHEAAAAJ&hl=en"
Reddit AMA:
Jürgen Schmidhuber
个人官网:
Wikipedia:
Google Scholar:
r=gLnCTgIAAAAJ&hl=en
Reddit AMA:
Geoffrey Hinton
个人官网:
Wikipedia:
Google Scholar:
Reddit AMA:
Terry Sejnowski
个人官网:
Wikipedia:
Twitter:
Google Scholar:
r=m1qAiOUAAAAJ&hl=en
Reddit AMA:
Michael Jordan
个人官网:
Wikipedia:
Google Scholar:
r=yxUduqMAAAAJ&hl=en"
Reddit AMA:
Peter Norvig
个人官网:
Wikipedia:
Google Scholar:
r=Ol0vcWgAAAAJ&hl=en
Reddit AMA:
Yoshua Bengio
个人官网:
Wikipedia:
Google Scholar:
r=kukA0LcAAAAJ&hl=en
Quora:
Reddit AMA:
Ina Goodfellow
个人官网:
Wikipedia:
Twitter:
Google Scholar:
r=iYN86KEAAAAJ&hl=en
Quora:
Quora Session:
Andrej Karpathy
个人官网:
Twitter:
Google Scholar:
r=l8WuQJgAAAAJ&hl=en
Quora:
Quora Session:
Richard Socher
个人官网:
Twitter:
Google Scholar:
r=FaOcyfMAAAAJ&hl=en
Interview:
Demis Hassabis
个人官网:
Wikipedia:
Twitter:
Google Scholar:
r=dYpPMQEAAAAJ&hl=en
Interview:
Christopher Manning
个人官网:
Twitter:
Google Scholar:
r=1zmDOdwAAAAJ&hl=en"
Fei-Fei Li
个人官网:
Wikipedia:
Twitter:
Google Scholar:
r=1zmDOdwAAAAJ&hl=en"
Ted Talk:
François Chollet
个人官网:
r=VfYhf2wAAAAJ&hl=en
Twitter:
Google Scholar:
r=VfYhf2wAAAAJ&hl=en
Quora:
Quora Session:
Dan Jurafsky
个人官网:
Wikipedia:
Twitter:
Google Scholar:
r=uZg9l58AAAAJ&hl=en
Oren Etzioni
个人官网:
Wikipedia:
Twitter:
Google Scholar:
r=XF6Yk98AAAAJ&hl=en
Quora:
r
Reddit AMA:
机构
网络上有大量的知名机构致力于推进人工智能领域的研究和发展。
以下列出的是同时拥有官方网站/博客和推特账号的机构。
OpenAI
官网:
Twitter:
DeepMind
官网:
Twitter:
Google Research
官网:
Twitter:
AWS AI
官网:
Twitter:
Facebook AI Research
官网:
Microsoft Research
官网:
Twitter:
Baidu Research
官网:
Twitter:
IntelAI
官网:
Twitter:
AI2
官网:
Twitter:
Partnership on AI
官网:
Twitter:
视频课程
以下列出的是一些免费的视频课程和教程。
Coursera — Machine Learning (Andrew Ng):
Coursera — Neural Networks for Machine Learning (Geoffrey Hinton):
Udacity — Intro to Machine Learning (Sebastian Thrun):
Udacity — Machine Learning (Georgia Tech):
Udacity — Deep Learning (Vincent Vanhoucke):
Machine Learning (mathematicalmonk):
Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):
Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016) :
;list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
(class link):
Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017) :
(class link):
Oxford Deep NLP 2017 (Phil Blunsom et al.):
Reinforcement Learning (David Silver):
Practical Machine Learning Tutorial with Python (sentdex):
;v=OGxgnH8y2NM
YouTube
以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:
sentdex (225K subscribers, 21M views):
Artificial Intelligence A.I. (7M views):
Siraj Raval (140K subscribers, 5M views):
Two Minute Papers (60K subscribers, 3.3M views):
Dee (42K subscribers, 1.7M views):
Data School (37K subscribers, 1.8M views):
Machine Learning Recipes with Josh Gordon (324K views):
Artificial Intelligence — Topic (10K subscribers):
Allen Institute for Artificial Intelligence (AI2) subscribers, 69K views):
Machine Learning at Berkeley (634 subscribers, 48K views):
Understanding Machine Learning — Shai Ben-David (973 subscribers, 43K views):
Machine Learning TV (455 subscribers, 11K views):
博客
Andrej Karpathy
博客:
Twitter:
i am trask
博客:
Twitter:
Christopher Olah
博客:
Twitter:
Top Bots
博客:
Twitter:
WildML
博客:
Twitter:
Distill
博客:
Twitter:
Machine Learning Mastery
博客:
Twitter:
FastML
博客:
Twitter:
Adventures in NI
博客:
Twitter:
Sebastian Ruder
博客:
Twitter:
Unsupervised Methods
博客:
Twitter:
Explosion
博客:
Twitter:
Tim Dettwers
博客:
Twitter:
When trees fall…
博客:
Twitter:
ML@B
博客:
Twitter:
媒体作家
以下是一些人工智能领域方向顶尖的媒体作家。
Robbie Allen:
Erik P.M. Vermeulen:
Frank Chen:
azeem:
Sam DeBrule:
Derrick Harris:
Yitaek Hwang:
samim:
Paul Boutin:
Mariya Yao:
Rob May:
Avinash Hindupur:
书籍
以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。
机器学习
Understanding Machine Learning From Theory to Algorithms:
Machine Learning Yearning:
A Course in Machine Learning:
Machine Learning:
Neural Networks and Deep Learning:
Deep Learning Book:
Reinforcement Learning: An Introduction:
Reinforcement Learning:
自然语言处理
Speech and Language Processing (3rd ed. draft):
slp3/
Natural Language Processing with Python:
An Introduction to Information Retrieval:
数学
Introduction to Statistical Thought:
Introduction to Bayesian Statistics:
Introduction to Probability:
Think Stats: Probability and Statistics for Python programmers:
The Probability and Statistics Cookbook:
Linear Algebra:
Linear Algebra Done Wrong:
Linear Algebra, Theory And Applications:
Mathematics for Computer Science:
Calculus:
Calculus I for Computer Science and Statistics Students:
Quora
Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。
Computer-Science followers):
Machine-Learning followers):
Artificial-Intelligence (635K followers):
Deep-Learning (167K followers):
Natural-Language-Processing (155K followers):
Classification-machine-learning (119K followers):
Artificial-General-Intelligence (82K followers)
Convolutional-Neural-Networks-CNNs (25K followers):
Computational-Linguistics (23K followers):
Recurrent-Neural-Networks followers):
Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。
/r/MachineLearning (111K readers):
/r/robotics/ (43K readers):
/r/artificial (35K readers):
/r/datascience (34K readers):
/r/learnmachinelearning (11K readers):
/r/computervision (11K readers):
/r/MLQuestions (8K readers):
/r/LanguageTechnology (7K readers):
/r/mlclass (4K readers):
/r/mlpapers (4K readers):
Github
人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。
Machine Learning (6K repos):
;q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93
Deep Learning (3K repos):
;type=Repositories
Tensorflow (2K repos):
;type=Repositories
Neural Network (1K repos):
;type=Repositories
NLP (1K repos):
;q=topic%3Anlp&type=Repositories
播客
对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。
ConcerningAI
官网:
iTunes:
This Week in Machine Learning and AI
官网:
iTunes:
The AI Podcast
官网:
iTunes:
Data Skeptic
官网:
iTunes:
Linear Digressions
官网:
iTunes:
?mt=2
Partially Dervative
官网:
iTunes:
O'Reilly Data Show
官网:
iTunes:
Learning Machines 101
官网:
iTunes:
The Talking Machines
官网:
iTunes:
Artificial Intelligence in Industry
官网:
iTunes:
Machine Learning Guide
官网
:
时事通讯媒体
如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。
The Exponential View:
AI Weekly:
Deep Hunt:
O’Reilly Artificial Intelligence Newsletter:
Machine Learning Weekly:
Data Science Weekly Newsletter:
Machine Learnings:
Artificial Intelligence News:
When trees fall…:
WildML:
Inside AI:
Kurzweil AI:
Import AI:
The Wild Week in AI:
Deep Learning Weekly:
Data Science Weekly:
KDnuggets Newsletter:
会议
随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。
学术会议
NIPS (Neural Information Processing Systems):
ICML (International Conference on Machine Learning):
KDD (Knowledge Discovery and Data Mining):
ICLR (International Conference on Learning Representations):
ACL (Association for Computational Linguistics):
EMNLP (Empirical Methods in Natural Language Processing):
CVPR (Computer Vision and PatternRecognition):
ICCF(InternationalConferenceonComputerVision):
专业会议
O’Reilly Artificial Intelligence Conference:
Machine Learning Conference (MLConf):
AI Expo (North America, Europe, World):
AI Summit:
AI Conference:
论文
arXiv.org上特定领域论文集:
Artificial Intelligence:
Learning (Computer Science):
Machine Learning (Stats):
NLP:
Computer Vision:
Semantic Scholar搜索结果:
Neural Networks (179K results):
;sort=relevance&ae=false
Machine Learning (94K results):
;sort=relevance&ae=false
Natural Language (62K results):
;sort=relevance&ae=false
Computer Vision (55K results):
;sort=relevance&ae=false
Deep Learning (24K results):
;sort=relevance&ae=false
此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。
作者:Robbie Allen
原文:
1.文章《ff12 英文版向日葵要什么材料》援引自互联网,为网友投稿收集整理,仅供学习和研究使用,内容仅代表作者本人观点,与本网站无关,侵删请点击页脚联系方式。
2.文章《ff12 英文版向日葵要什么材料》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
相关推荐
- . 现代买票为什么带上携程保险
- . 潮阳怎么去广州南站
- . 湖南马拉河怎么样
- . 烧纸为什么到三岔路口
- . 百色为什么这么热
- . 神州租车怎么样
- . 芜湖方特哪个适合儿童
- . 护肤品保养液是什么类目
- . 早晚的护肤保养有哪些项目
- . 女孩护肤品怎么保养的最好