1、DS18B20的主要特性

1.1、自适应电压范围更广,电压范围:3 . 0 ~ 5 . 5伏,在寄生电源模式下可通过数据线供电

1.2、独特的单线接口方式,DS18B20在连接到微处理器时,只需一条入选线,就可以实现微处理器和DS18B20之间的双向通信。

1.3、DS18B20支持多点联网功能,多个DS18B20并行连接到唯一的三线,实现网络多点温度测量。

1.4、DS18B20使用时不需要周边部件。所有传感器和转换电路都集成在三极管这样的集成电路中。

1.5,温度范围-55 ~ 125,-10 ~ 85 时准确度为0.5

1.6、可编程分辨率为9 ~ 12位,相应的分辨率温度分别为0.5、0.25、0.125、0.0625,可实现高精度温度测量。

在1.7、9位分辨率下,将温度从高达93 . 75毫秒转换为数字;在12位分辨率下,将温度值从高达750毫秒转换为数字,速度更快

1.8、测量结果可以直接输出数字温度信号,用“一线总线”直接发送给CPU,发送CRC检查代码,具有极强的抗干扰纠错能力。

1.9、声压特性:电源极性反转时,芯片不会因为热量而燃烧,但无法正常工作。

2、DS18B20的外形和内部结构

DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图1:

DS18B20引脚定义:

(1)DQ为数字信号输入/输出端;
(2)GND为电源地;
(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

图2: DS18B20内部结构图

3、DS18B20工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

图3: DS18B20测温原理框图

DS18B20有4个主要的数据部件:

(1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

(2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

表1: DS18B20温度值格式表

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

表2: DS18B20温度数据表

(3)DS18B20温度传感器的存储器

DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。

相关推荐