必需的一个
首先,熟悉化学实验的基本操作。
酒精、汽油——易燃液体等有害化学物质的标记
浓H2SO4、NaOH(酸碱)——副食品。
二、混合物的分离和提纯:
1、分离的方法:
①过滤:固体(不溶)和液体的分离。
②蒸发:固体(可溶)和液体分离。
③蒸馏:沸点不同的液体混合物的分离。
④分液:互不相溶的液体混合物。
⑤萃取:利用混合物中一种溶质在互不相溶的溶剂里溶解性的不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来。
2、蒸馏装置注意事项:
①加热烧瓶要垫上石棉网;
②温度计的水银球应位于蒸馏烧瓶的支管口处;
③加碎瓷片的目的是防止暴沸;
④冷凝水由下口进,上口出。
3、从碘水中提取碘的实验时,选用萃取剂应符合原则:
①被萃取的物质在萃取剂溶解度比在原溶剂中的大的多;
②萃取剂与原溶液溶剂互不相溶;
③萃取剂不能与被萃取的物质反应。
三、离子的检验:
①硫酸根:先加稀盐酸,再加BaCl2溶液有白色沉淀。
②氯离子:加AgNO3溶液有白色沉淀生成,再加稀硝酸沉淀不溶解;或先加稀硝酸酸化,再加AgNO3溶液,有白色沉淀生成。
③碳酸根:先加BaCl2溶液生成白色沉淀,再加稀盐酸,沉淀溶解,并生成无色无味、能使澄清石灰水变浑浊的气体。
1、物质的量(n)是国际单位制中7个基本物理量之一。
2、五个化学符号:
概念、符号
定义
注 意 事 项
物质的量:
n
衡量一定数目粒子集体的物理量
①摩尔(mol)是物质的量的单位,只能用来衡量微观粒子:原子、分子、离子、原子团、电子、质子、中子等。
②用物质的量表示微粒时,要指明粒子的种类。
阿伏加德罗常数:
NA
1mol任何物质所含粒子数。
NA有单位:mol-1或 /mol,读作每摩尔,
NA≈6.02×1023mol-1。
摩尔质量:
M
单位物质的量物质所具有的质量
①一种物质的摩尔质量以g/mol为单位时,在数值上与其相对原子或相对分子质量相等。
②一种物质的摩尔质量不随其物质的量变化而变
气体摩尔体积:
Vm
单位物质的量气体所具有的体积
①影响气体摩尔体积因素有温度和压强。
②在标准状况下(0℃,101KPa)1mol任何气体所占体积约为22.4L即在标准状况下,Vm≈22.4L/mol
物质的量浓度:
C
单位体积溶液所含某溶质B物质的量。
①公式中的V必须是溶液的体积;将1L水溶解溶质或者气体,溶液体积肯定不是1L。
②某溶质的物质的量浓度不随所取溶液体积多少而变
3、各个量之间的关系:
4、溶液稀释公式:
(根据溶液稀释前后,溶液中溶质的物质的量不变)
C浓溶液V浓溶液=C稀溶液V稀溶液
5、溶液中溶质浓度可以用两种方法表示:
①质量分数
②物质的量浓度
质量分数与物质的量浓度的关系:C=1000ρW/M(其中ρ单位为g/cm3)
6、一定物质的量浓度溶液的配制
(1)配制使用的仪器:托盘天平(固体溶质)、量筒(液体溶质)、容量瓶(强调:在具体实验时,应写规格,否则错!)、烧杯、玻璃棒、胶头滴管。
(2)配制的步骤:
①计算溶质的量(若为固体溶质计算所需质量,若为溶液计算所需溶液的体积)
②称取(或量取)③溶解(静置冷却)④转移⑤洗涤⑥定容⑦摇匀。
※注意:
①不能配制任意体积的一定物质的量浓度的溶液,这是因为容量瓶的容积是固定的,没有任意体积规格的容量瓶。
②溶液注入容量瓶前需恢复到室温,这是因为容量瓶受热易炸裂,同时溶液温度过高会使容量瓶膨胀影响溶液配制的精确度。
③用胶头滴管定容后再振荡,出现液面低于刻度线时不要再加水,这是因为振荡时有少量溶液粘在瓶颈上还没完全回流,故液面暂时低于刻度线,若此时又加水会使所配制溶液的浓度偏低。
④如果加水定容时超出了刻度线,不能将超出部分再吸走,须应重新配制。
⑤如果摇匀时不小心洒出几滴,不能再加水至刻度,必须重新配制,这是因为所洒出的几滴溶液中含有溶质,会使所配制溶液的浓度偏低。
⑥溶质溶解后转移至容量瓶时,必须用少量蒸馏水将烧杯及玻璃棒洗涤2—3次,并将洗涤液一并倒入容量瓶,这是因为烧杯及玻璃棒会粘有少量溶质,只有这样才能尽可能地把溶质全部转移到容量瓶中。
1、分散系及其分类:
(1)分散系组成:分散剂和分散质,按照分散质和分散剂所处的状态,分散系可以有9种组合方式。
(2)当分散剂为液体时,根据分散质粒子大小可以将分散系分为溶液、胶体、浊液。
分散系
溶液
胶体
浊液
分散粒子直径
<1nm
1~100nm
>100nm
外观
均一,透明,稳定
均一,透明,介稳体系
不均一,不透明,不稳定
能否透过滤纸
能
能
不能
能否透过半透膜
能
不能
不能
实例
食盐水
Fe(OH)3胶体
泥浆水
2、胶体:
(1)常见胶体:Fe(OH)3胶体、Al(OH)3胶体、血液、豆浆、淀粉溶液、蛋白质溶液、有色玻璃、墨水等。
(2)胶体的特性:能产生丁达尔效应。区别胶体与其他分散系常用方法丁达尔效应。
(3)Fe(OH)3胶体的制备方法:将饱和FeCl3溶液滴入沸水中,继续加热至体系呈红褐色,停止加热,得Fe(OH)3胶体。
一、电解质和非电解质
电解质:在水溶液里或熔融状态下能导电的化合物。
非电解质:在水溶液中和熔融状态下都不能导电的化合物。
(1)电解质和非电解质都是化合物,单质和混合物既不是电解质也不是非电解质。
(2)酸、碱、盐和水都是电解质。
(3)能导电的物质不一定是电解质。能导电的物质:电解质溶液、熔融的碱和盐、金属单质和石墨。
2、溶液能够导电的原因:有能够自由移动的离子。
二、离子反应
1、离子反应发生的条件:生成沉淀、生成气体、水、发生氧化还原反应、发生络合反应。
2、离子方程式的书写:(写、拆、删、查)。
①写:写出正确的化学方程式(要注意配平)。
②拆:把易溶的强电解质(易容的盐、强酸、强碱)写成离子形式。
③删:删除不参加反应的离子(价态不变和存在形式不变的离子)。
④查:检查书写离子方程式等式两边是否原子个数守恒、电荷数守恒。
3、离子方程式正误判断:
①看是否符合反应事实(能不能发生反应,反应物、生成物对不对)。
②看是否可拆。
③看是否配平(原子个数守恒,电荷数守恒)。
4、离子共存问题
(1)由于发生复分解反应(生成沉淀或气体或水)的离子不能大量共存。
(2)审题时应注意题中给出的附加条件。
①无色溶液中不存在有色离子:Cu2+、Fe3+、Fe2+、MnO4-(常见这四种有色离子)。
②注意挖掘某些隐含离子:酸性溶液(或pH<7)中隐含有H+,碱性溶液(或pH>7)中隐含有OH-。
③注意题目要求“大量共存”还是“不能大量共存”。
一、氧化还原反应
1、氧化还原反应的本质:
有电子转移(包括电子的得失或偏移)。
2、氧化还原反应的特征:
有元素化合价升降。
3、判断氧化还原反应的依据:
凡是有元素化合价升降或有电子的转移的化学反应都属于氧化还原反应。
4、氧化还原反应相关概念:
还原剂(具有还原性):失(失电子)→升(化合价升高)→氧(被氧化或发生氧化反应)→生成氧化产物。
氧化剂(具有氧化性):得(得电子)→降(化合价降低)→还(被还原或发生还原反应)→生成还原产物。
二、氧化性、还原性强弱的判断
(1)根据氧化还原反应方程式在同一氧化还原反应中,
氧化性:氧化剂>氧化产物;
还原性:还原剂>还原产物。
三、如果使元素化合价升高,即要使它被氧化,要加入氧化剂才能实现;如果使元素化合价降低,即要使它被还原,要加入还原剂才能实现;
一、钠 Na
1、单质钠的物理性质:钠质软、银白色、熔点低、密度比水的小但比煤油的大。
2、单质钠的化学性质:
①钠与O2反应
常温下:4Na + O2=2Na2O (新切开的钠放在空气中容易变暗)
加热时:2Na + O2==Na2O2 (钠先熔化后燃烧,发出黄色火焰,生成淡黄色固体Na2O2。)
Na2O2中氧元素为-1价,Na2O2既有氧化性又有还原性。
2Na2O2+2H2O=4NaOH+O2↑
2Na2O2+2CO2=2Na2CO3+O2
Na2O2是呼吸面具、潜水艇的供氧剂,Na2O2具有强氧化性能漂白。
②钠与H2O反应
2Na+2H2O=2NaOH+H2↑
离子方程式:2Na+2H2O=2Na++2OH-+H2↑
实验现象:“浮——钠密度比水小;熔——钠熔点低;游——生成氢气;响——反应剧烈;红——生成的NaOH遇酚酞变红”。
③钠与盐溶液反应
如钠与CuSO4溶液反应,应该先是钠与H2O反应生成NaOH与H2,再和CuSO4溶液反应,K、Ca、Na三种单质与盐溶液反应时,先与水反应生成相应的碱,碱再和盐溶液反应
④钠与酸反应:
2Na+2HCl=2NaCl+H2↑(反应剧烈)
离子方程式:2Na+2H+=2Na++H2↑
3、钠的存在:以化合态存在。
4、钠的保存:保存在煤油或石蜡中。
5、钠在空气中的变化过程:
Na→Na2O→NaOH→Na2CO3→Na2CO3·10H2O(结晶)→Na2CO3(风化),最终得到是一种白色粉末。
二、铝 Al
1、单质铝的物理性质:银白色金属、密度小(属轻金属)、硬度小、熔沸点低。
2、单质铝的化学性质
①铝与O2反应:常温下铝能与O2反应生成致密氧化膜,保护内层金属。加热条件下铝能与O2反应生成氧化铝:4Al+3O2==2Al2O3
②常温下Al既能与强酸反应,又能与强碱溶液反应,均有H2生成,也能与不活泼的金属盐溶液反应:
※注意:
铝制餐具不能用来长时间存放酸性、碱性和咸的食品。
③铝与某些金属氧化物的反应(如V、Cr、Mn、Fe的氧化物)叫做铝热反应
Fe2O3+2Al == 2Fe+Al2O3,Al 和 Fe2O3的混合物叫做铝热剂。利用铝热反应焊接钢轨。
三、铁
1、单质铁的物理性质:
铁片是银白色的,铁粉呈黑色,纯铁不易生锈,但生铁(含碳杂质的铁)在潮湿的空气中易生锈。(原因:形成了铁碳原电池。铁锈的主要成分是Fe2O3)。
2、单质铁的化学性质:
①铁与氧气反应:3Fe+2O2==Fe3O4(现象:剧烈燃烧,火星四射,生成黑色的固体)
②与非氧化性酸反应:Fe+2HCl=FeCl2+H2↑ (Fe+2H+=Fe2++H2↑)
常温下铝、铁遇浓硫酸或浓硝酸钝化。加热能反应但无氢气放出。
③与盐溶液反应:Fe+CuSO4=FeSO4+Cu(Fe+Cu2+=Fe2++Cu)
④与水蒸气反应:3Fe+4H2O(g)==Fe3O4+4H2
一、氧化物
1、Al2O3的性质:
氧化铝是一种白色难溶物,其熔点很高,可用来制造耐火材料如坩锅、耐火管、耐高温的实验仪器等。Al2O3是两性氧化物:既能与强酸反应,又能与强碱反应。
2、铁的氧化物的性质:FeO、Fe2O3都为碱性氧化物,能与强酸反应生成盐和水。
二、氢氧化物
1、氢氧化铝 Al(OH)3
①Al(OH)3是两性氢氧化物,在常温下它既能与强酸,又能与强碱反应:
②Al(OH)3受热易分解成Al2O3:2Al(OH)3==Al2O3+3H2O(规律:不溶性碱受热均会分解)
③Al(OH)3的制备:实验室用可溶性铝盐和氨水反应来制备Al(OH)3,因为强碱(如NaOH)易与Al(OH)3反应,所以实验室不用强碱而用氨水。
2、铁的氢氧化物:
氢氧化亚铁Fe(OH)2(白色)和氢氧化铁Fe(OH)3(红褐色)
①都能与酸反应生成盐和水:
②Fe(OH)2可以被空气中的氧气氧化成Fe(OH)3
4Fe(OH)2+O2+2H2O=4Fe(OH)3(现象:白色沉淀→灰绿色→红褐色)
③Fe(OH)3受热易分解生成Fe2O3:2Fe(OH)3==Fe2O3+3H2O
3、氢氧化钠NaOH:
俗称烧碱、火碱、苛性钠,易潮解,有强腐蚀性,具有碱的通性。
三、盐
1、铁盐(铁为+3价)、亚铁盐(铁为+2价)的性质:
①铁盐(铁为+3价)具有氧化性,可以被还原剂(如铁、铜等)还原成亚铁盐:
2FeCl3+Fe=3FeCl2( 2Fe3++Fe=3Fe2+)(价态归中规律)
2FeCl3+Cu=2FeCl2+CuCl2( 2Fe3++Cu=2Fe2++Cu2+)(制印刷电路板的反应原理)
亚铁盐(铁为+2价)具有还原性,能被氧化剂(如氯气、氧气、硝酸等)氧化成铁盐:
②Fe3+离子的检验:
a.溶液呈黄色;
b.加入KSCN(硫氰化钾)溶液变红色;
c.加入NaOH溶液反应生成红褐色沉淀[Fe(OH)3]。
Fe2+离子的检验:
a.溶液呈浅绿色;
b.先在溶液中加入KSCN溶液,不变色,再加入氯水,溶液变红色;
c.加入NaOH溶液反应先生成白色沉淀,迅速变成灰绿色沉淀,最后变成红褐色沉淀。
2、钠盐:Na2CO3与NaHCO3的性质比较
Na2CO3
NaHCO3
俗称
纯碱、苏打
小苏打
水溶性比较
Na2CO3 > NaHCO3
溶液酸碱性
碱性
碱性
与酸反应剧烈程度
较慢(二步反应)
较快(一步反应)
与酸反应
Na2CO3+2HCl=2NaCl+H2O+CO2↑
NaHCO3+HCl=NaCl+H2O+CO2↑
热稳定性
加热不分解
加热分解
2NaHCO3=Na2CO3+H2O+CO2↑
与CO2反应
Na2CO3+CO2+H2O=2NaHCO3
不反应
与NaOH溶液反应
不反应(不能发生离子交换)
NaHCO3+NaOH=Na2CO3+H2O
HCO3-+OH-=H2O+CO32-
与Ca(OH)2溶液反应
Ca(OH)2+Na2CO3=CaCO3↓+2NaOH
Ca2++CO32-=CaCO3↓
也能反应生成CaCO3沉淀
与CaCl2溶液反应
有CaCO3沉淀
不反应
用途
洗涤剂,玻璃、肥皂、造纸、纺织等工业
发酵粉、灭火剂、治疗胃酸过多(有胃溃疡时不能用)
四、焰色反应
1、定义:金属或它们的化合物在灼烧时使火焰呈现特殊颜色的性质。
2、操作步骤:铂丝(或铁丝)用盐酸浸洗后灼烧至无色,沾取试样(单质、化合物、气、液、固均可)在火焰上灼烧,观察颜色。
3、 重要元素的焰色:
钠元素黄色、 钾元素紫色(透过蓝色的钴玻璃观察,以排除钠的焰色的干扰)
焰色反应属物理变化。与元素存在状态(单质、化合物)、物质的聚集状态(气、液、固)等无关,只有少数金属元素有焰色反应。
一、硅及其化合物 Si
硅元素在地壳中的含量排第二,在自然界中没有游离态的硅,只有以化合态存在的硅,常见的是二氧化硅、硅酸盐等。
1、单质硅(Si):
(1)物理性质:有金属光泽的灰黑色固体,熔点高,硬度大。
(2)化学性质:
①常温下化学性质不活泼,只能跟F2、HF和NaOH溶液反应。
Si+2F2=SiF4
Si+4HF=SiF4↑+2H2↑
Si+2NaOH+H2O=Na2SiO3+2H2↑
②在高温条件下,单质硅能与O2和Cl2等非金属单质反应。
(3)用途:太阳能电池、计算机芯片以及半导体材料等。
(4)硅的制备:工业上,用C在高温下还原SiO2可制得粗硅。
SiO2+2C=Si(粗)+2CO↑
Si(粗)+2Cl2=SiCl4
SiCl4+2H2=Si(纯)+4HCl
2、二氧化硅(SiO2):
(1)SiO2的空间结构:立体网状结构,SiO2直接由原子构成,不存在单个SiO2分子。
(2)物理性质:熔点高,硬度大,不溶于水。
(3)化学性质:SiO2常温下化学性质很不活泼,不与水、酸反应(氢氟酸除外),能与强碱溶液、氢氟酸反应,高温条件下可以与碱性氧化物反应:
①与强碱反应:SiO2+2NaOH=Na2SiO3+H2O(生成的硅酸钠具有粘性,所以不能用带磨口玻璃塞试剂瓶存放NaOH溶液和Na2SiO3溶液,避免Na2SiO3将瓶塞和试剂瓶粘住,打不开,应用橡皮塞)。
②与氢氟酸反应[SiO2的特性]:SiO2+4HF=SiF4↑+2H2O(利用此反应,氢氟酸能雕刻玻璃;氢氟酸不能用玻璃试剂瓶存放,应用塑料瓶)。
③高温下与碱性氧化物反应:SiO2+CaOCaSiO3
(4)用途:光导纤维、玛瑙饰物、石英坩埚、水晶镜片、石英钟、仪器轴承、玻璃和建筑材料等。
3、硅酸(H2SiO3):
(1)物理性质:不溶于水的白色胶状物,能形成硅胶,吸附水分能力强。
(2)化学性质:H2SiO3是一种弱酸,酸性比碳酸还要弱,其酸酐为SiO2,但SiO2不溶于水,故不能直接由SiO2溶于水制得,而用可溶性硅酸盐与酸反应制取:(强酸制弱酸原理)
Na2SiO3+2HCl=2NaCl+H2SiO3↓
Na2SiO3+CO2+H2O=H2SiO3↓+Na2CO3(此方程式证明酸性:H2SiO3<H2CO3)
(3)用途:硅胶作干燥剂、催化剂的载体。
4、硅酸盐:
硅酸盐:硅酸盐是由硅、氧、金属元素组成的化合物的总称。硅酸盐种类很多,大多数难溶于水,最常见的可溶性硅酸盐是Na2SiO3,Na2SiO3的水溶液俗称水玻璃,又称泡花碱,是一种无色粘稠的液体,可以作黏胶剂和木材防火剂。硅酸钠水溶液久置在空气中容易变质:
Na2SiO3+CO2+H2O=Na2CO3+H2SiO3↓(有白色沉淀生成)
传统硅酸盐工业三大产品有:玻璃、陶瓷、水泥。
二、氯及其化合物
在自然界中没游离态的氯,氯只以化合态存在(主要以氯化物和氯酸盐)。
1、氯气(Cl2):
(1)物理性质:黄绿色有刺激性气味有毒的气体,密度比空气大,易液化成液氯,易溶于水。(氯气收集方法—向上排空气法或者排饱和食盐水;液氯为纯净物)
(2)化学性质:氯气化学性质非常活泼,很容易得到电子,作强氧化剂,能与金属、非金属、水以及碱反应。
①与金属反应(将金属氧化成最高正价)
Na+Cl2===点燃2NaCl
Cu+Cl2===点燃CuCl2
2Fe+3Cl2===点燃2FeCl3
②与非金属反应
Cl2+H2 ===点燃 2HCl(氢气在氯气中燃烧现象:安静地燃烧,发出苍白色火焰)
将H2和Cl2混合后在点燃或光照条件下发生爆炸。
燃烧:所有发光发热的剧烈化学反应都叫做燃烧,不一定要有氧气参加。
③Cl2与水反应
Cl2+H2O=HCl+HClO
离子方程式:Cl2+H2O=H++Cl—+HClO
将氯气溶于水得到氯水(浅黄绿色),氯水含多种微粒,其中有H2O、Cl2、HClO、Cl-、H+、OH-(极少量,水微弱电离出来的)。
氯水的性质取决于其组成的微粒:
(1)强氧化性:Cl2是新制氯水的主要成分,实验室常用氯水代替氯气,如氯水中的氯气能与KI,KBr、FeCl2、SO2、Na2SO3等物质反应。
(2)漂白、消毒性:氯水中的Cl2和HClO均有强氧化性,一般在应用其漂白和消毒时,应考虑HClO,HClO的强氧化性将有色物质氧化成无色物质,不可逆。
(3)酸性:氯水中含有HCl和HClO,故可被NaOH中和,盐酸还可与NaHCO3,CaCO3等反应。
(4)不稳定性:HClO不稳定光照易分解。,因此久置氯水(浅黄绿色)会变成稀盐酸(无色)失去漂白性。
(5)沉淀反应:加入AgNO3溶液有白色沉淀生成(氯水中有Cl-)。自来水也用氯水杀菌消毒,所以用自来水配制以下溶液如KI、 KBr、FeCl2、Na2SO3、Na2CO3、NaHCO3、AgNO3、NaOH等溶液会变质。
④Cl2与碱液反应:
与NaOH反应:Cl2+2NaOH=NaCl+NaClO+H2O
与Ca(OH)2溶液反应:2Cl2+2Ca(OH)2=Ca(ClO)2+CaCl2+2H2O
此反应用来制漂白粉,漂白粉的主要成分为Ca(ClO)2和CaCl2,有效成分为Ca(ClO)2。
漂白粉之所以具有漂白性,原因是:Ca(ClO)2+CO2+H2O=CaCO3↓+2HClO生成的HClO具有漂白性;同样,氯水也具有漂白性,因为氯水含HClO;NaClO同样具有漂白性,发生反应2NaClO+CO2+H2O==Na2CO3+2HClO;
干燥的氯气不能使红纸褪色,因为不能生成HClO,湿的氯气能使红纸褪色,因为氯气发生下列反应Cl2+H2O=HCl+HClO。
漂白粉久置空气会失效(涉及两个反应):Ca(ClO)2+CO2+H2O=CaCO3↓+2HClO,,漂白粉变质会有CaCO3存在,外观上会结块,久置空气中的漂白粉加入浓盐酸会有CO2气体生成,含CO2和HCl杂质气体。
⑤氯气的用途:制漂白粉、自来水杀菌消毒、农药和某些有机物的原料等。
2、Cl-的检验:
原理:根据Cl-与Ag+反应生成不溶于酸的AgCl沉淀来检验Cl-存在。
方法:先加稀硝酸酸化溶液(排除CO32-干扰)再滴加AgNO3溶液,如有白色沉淀生成,则说明有Cl-存在。
三、硫及其化合物
1、硫元素的存在:
硫元素容易得到2个电子呈-2价或者与其他非金属元素结合成呈+4价、+6价化合物。硫元素在自然界中既有游离态又有化合态。(如火山口中的硫就以单质存在)
2、硫单质:
①物质性质:俗称硫磺,淡黄色固体,不溶于水,熔点低。
②化学性质:S+O2 ===点燃 SO2(空气中点燃淡蓝色火焰,纯氧中蓝紫色)
3、二氧化硫(SO2)
(1)物理性质:无色、有刺激性气味有毒的气体,易溶于水,密度比空气大,易液化。
(2)SO2的制备:S+O2 ===点燃SO2或Na2SO3+H2SO4=Na2SO4+SO2↑+H2O
(3)化学性质:①SO2能与水反应SO2+H2OH2SO3(亚硫酸,中强酸)此反应为可逆反应。
可逆反应定义:在相同条件下,正逆方向同时进行的反应。(关键词:相同条件下)
②SO2为酸性氧化物,是亚硫酸(H2SO3)的酸酐,可与碱反应生成盐和水。
a、与NaOH溶液反应:
SO2(少量)+2NaOH=Na2SO3+H2O (SO2+2OH-=SO32-+H2O)
SO2(过量)+NaOH=NaHSO3(SO2+OH-=HSO3-)
b、与Ca(OH)2溶液反应:
SO2(少量)+Ca(OH)2=CaSO3↓(白色)+H2O
2SO2(过量)+Ca(OH)2=Ca(HSO3) 2 (可溶)
对比CO2与碱反应:
CO2(少量)+Ca(OH)2=CaCO3↓(白色)+H2O
2CO2(过量)+Ca(OH)2=Ca(HCO3) 2 (可溶)
将SO2逐渐通入Ca(OH)2溶液中先有白色沉淀生成,后沉淀消失,与CO2逐渐通入Ca(OH)2溶液实验现象相同,所以不能用石灰水来鉴别SO2和CO2。能使石灰水变浑浊的无色无味的气体一定是二氧化碳,这说法是对的,因为SO2是有刺激性气味的气体。
③SO2具有强还原性,能与强氧化剂(如酸性高锰酸钾溶液、氯气、氧气等)反应。SO2能使酸性KMnO4溶液、新制氯水褪色,显示了SO2的强还原性(不是SO2的漂白性)。
SO2+Cl2+2H2O=H2SO4+2HCl(将SO2气体和Cl2气体混合后作用于有色溶液,漂白效果将大大减弱。)
④SO2的弱氧化性:如2H2S+SO2=3S↓+2H2O(有黄色沉淀生成)
⑤SO2的漂白性:SO2能使品红溶液褪色,加热会恢复原来的颜色。用此可以检验SO2的存在。
SO2
Cl2
漂白的物质
漂白某些有色物质
使湿润有色物质褪色
原理
与有色物质化合生成不稳定的无色物质
与水生成HClO,HClO具有漂白性,将有色物质氧化成无色物质
加热
能恢复原色(无色物质分解)
不能复原
⑥SO2的用途:漂白剂、杀菌消毒、生产硫酸等。
4、硫酸(H2SO4)
(1)浓硫酸的物理性质:纯的硫酸为无色油状粘稠液体,能与水以任意比互溶(稀释浓硫酸要规范操作:注酸入水且不断搅拌)。质量分数为98%(或18.4mol/l)的硫酸为浓硫酸。不挥发,沸点高,密度比水大。
(2)浓硫酸三大性质:吸水性、脱水性、强氧化性。
①吸水性:浓硫酸可吸收结晶水、湿存水和气体中的水蒸气,可作干燥剂,可干燥H2、O2、SO2、CO2等气体,但不可以用来干燥NH3、H2S、HBr、HI、C2H4五种气体。
②脱水性:能将有机物(蔗糖、棉花等)以水分子中H和O原子个数比2︰1脱水,炭化变黑。
③强氧化性:浓硫酸在加热条件下显示强氧化性(+6价硫体现了强氧化性),能与大多数金属反应,也能与非金属反应。
a. 与大多数金属反应:2H2SO4 (浓)+Cu===△CuSO4+2H2O+SO2 ↑
(此反应浓硫酸表现出酸性和强氧化性 )
b. 与非金属反应(如C反应):2H2SO4(浓)+C===△CO2 ↑+2H2O+SO2 ↑
(此反应浓硫酸表现出强氧化性 )
※注意:
常温下,Fe、Al遇浓H2SO4或浓HNO3发生钝化。
浓硫酸的强氧化性使许多金属能与它反应,但在常温下,铝和铁遇浓硫酸时,因表面被浓硫酸氧化成一层致密氧化膜,这层氧化膜阻止了酸与内层金属的进一步反应。这种现象叫金属的钝化。铝和铁也能被浓硝酸钝化,所以,常温下可以用铁制或铝制容器盛放浓硫酸和浓硝酸。
(3)硫酸的用途:干燥剂、化肥、炸药、蓄电池、农药、医药等。
四、氮及其化合物
1、氮的氧化物:NO2和NO
N2+O2 ===高温或放电 2NO,生成的一氧化氮很不稳定:2NO+O2 == 2NO2
一氧化氮:无色气体,有毒,能与人血液中的血红蛋白结合而使人中毒(与CO中毒原理相同),不溶于水。是空气中的污染物。
二氧化氮:红棕色气体(与溴蒸气颜色相同)、有刺激性气味、有毒、易液化、易溶于水,并与水反应:
3NO2+H2O=2HNO3+NO,此反应中NO2既是氧化剂又是还原剂。以上三个反应是“雷雨固氮”、“雷雨发庄稼”的反应。
2、硝酸(HNO3):
(1)硝酸物理性质:纯硝酸是无色、有刺激性气味的油状液体。低沸点(83℃)、易挥发,在空气中遇水蒸气呈白雾状。98%以上的硝酸叫“发烟硝酸”,常用浓硝酸的质量分数为69%。
(2)硝酸的化学性质:具有一般酸的通性,稀硝酸遇紫色石蕊试液变红色,浓硝酸遇紫色石蕊试液先变红(H+作用)后褪色(浓硝酸的强氧化性)。用此实验可证明浓硝酸的氧化性比稀硝酸强。浓硝酸和稀硝酸都是强氧化剂,能氧化大多数金属,但不放出氢气,通常浓硝酸产生NO2,稀硝酸产生NO,如:
①Cu+4HNO3(浓)=Cu(NO3)2+2NO2↑+2H2O
②3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O
反应①还原剂与氧化剂物质的量之比为1︰2;反应②还原剂与氧化剂物质的量之比为3︰2。
常温下,Fe、Al遇浓H2SO4或浓HNO3发生钝化,(说成不反应是不妥的),加热时能发生反应:
当溶液中有H+和NO3-时,相当于溶液中含HNO3,此时,因为硝酸具有强氧化性,使得在酸性条件下NO3-与具有强还原性的离子如S2-、Fe2+、SO32-、I-、Br-(通常是这几种)因发生氧化还原反应而不能大量共存。(有沉淀、气体、难电离物生成是因发生复分解反应而不能大量共存。)
3、氨气(NH3)
(1)氨气的物理性质:无色气体,有刺激性气味、比空气轻,易液化,极易溶于水,1体积水可以溶解700体积的氨气(可做红色喷泉实验)。浓氨水易挥发出氨气。
(2)氨气的化学性质:
a. 溶于水溶液呈弱碱性:
生成的一水合氨NH3·H2O是一种弱碱,很不稳定,受热会分解:
氨气或液氨溶于水得氨水,氨水的密度比水小,并且氨水浓度越大密度越小,计算氨水浓度时,溶质是NH3,而不是NH3·H2O。
氨水中的微粒:H2O、NH3、NH3·H2O、NH4+、OH—、H+(极少量,水微弱电离出来)。
喷泉实验的原理:是利用气体极易被一种液体吸收而形成压强差,使气体容器内压强降低,外界大气压把液体压入气体容器内,在玻璃导管尖嘴处形成美丽的“喷泉”。
喷泉实验成功的关键:
(1)气体在吸收液中被吸收得既快又多,如NH3、HCl、HBr、HI、NO2用水吸收,CO2、SO2,Cl2、H2S等用NaOH溶液吸收等。
(2)装置的气密性要好。
(3)烧瓶内的气体纯度要大。
b. 氨气可以与酸反应生成盐:
①NH3+HCl=NH4Cl
②NH3+HNO3=NH4NO3
③ 2NH3+H2SO4=(NH4)2SO4
因NH3溶于水呈碱性,所以可以用湿润的红色石蕊试纸检验氨气的存在,因浓盐酸有挥发性,所以也可以用蘸有浓盐酸的玻璃棒靠近集气瓶口,如果有大量白烟生成,可以证明有NH3存在。
(3)氨气的实验室制法:
①原理:铵盐与碱共热产生氨气
②装置特点:固+固气体,与制O2相同。
③收集:向下排空气法。
④验满:
a. 湿润的红色石蕊试纸(NH3是唯一能使湿润的红色石蕊试纸变蓝的气体)
b. 蘸浓盐酸的玻璃棒(产生白烟)
⑤干燥:用碱石灰(NaOH与CaO的混合物)或生石灰在干燥管或U型管中干燥。不能用CaCl2、P2O5、浓硫酸作干燥剂,因为NH3能与CaCl2反应生成CaCl2·8NH3。P2O5、浓硫酸均能与NH3反应,生成相应的盐。所以NH3通常用碱石灰干燥。
⑥吸收:在试管口塞有一团湿的棉花其作用有两个:一是减小氨气与空气的对流,方便收集氨气;二是吸收多余的氨气,防止污染空气。
(4)氨气的用途:液氨易挥发,汽化过程中会吸收热量,使得周围环境温度降低,因此,液氨可以作制冷剂。
4、铵盐
铵盐均易溶于水,且都为白色晶体(很多化肥都是铵盐)。
(1)受热易分解,放出氨气:
(2)干燥的铵盐能与碱固体混合加热反应生成氨气,利用这个性质可以制备氨气:
(3)NH4+的检验:样品加碱混合加热,放出的气体能使湿的红色石蕊试纸变蓝,则证明该物质会有NH4+。
选修三
一、原子结构
1、能层和能级
(1)能层和能级的划分
①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系
每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理
(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np
(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态
①基态:最低能量状态。处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
3、电子云与原子轨道
(1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。
(2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,np能级各有3个原子轨道,相互垂直(用px、py、pz表示);nd能级各有5个原子轨道;nf能级各有7个原子轨道。
4、核外电子排布规律
(1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。
(2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。
(3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。
(4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。
能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。
(5)(n-1)d能级上电子数等于10时,副族元素的族序数=ns能级电子数
二、元素周期表和元素周期律
1、元素周期表的结构
元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。
(1)原子的电子层构型和周期的划分
周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。
(2)原子的电子构型和族的划分
族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。
(3)原子的电子构型和元素的分区
按电子排布可把周期表里的元素划分成 5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。
2、元素周期律
元素的性质随着核电荷数的递增发生周期性的递变,叫做元素周期律。元素周期律主要体现在核外电子排布、原子半径、主要化合价、金属性、非金属性、第一电离能、电负性等的周期性变化。元素性质的周期性来源于原子外电子层构型的周期性。
(1)同周期、同主族元素性质的递变规律
(2)微粒半径的比较方法
①同一元素:一般情况下元素阴离子的离子半径大于相应原子的原子半径,阳离子的离子半径小于相应原子的原子半径。
②同周期元素(只能比较原子半径):随原子序数的增大,原子的原子半径依次减小。如:Na>Mg>Al>Si>P>S>Cl
③同主族元素(比较原子和离子半径):随原子序数的增大,原子的原子半径依次增大。如:Li<Na<K<Rb<Cs,F-<Cl-<Br-<I-
④同电子层结构(阳离子的电子层结构与上一周期0族元素原子具有相同的电子层结构,阴离子与同周期0族元素原子具有相同的电子层结构):随核电荷数增大,微粒半径依次减小。如:F->Na+>Mg2+>Al3+
(3)元素金属性强弱的判断方法
(4)非金属性强弱的判断方法
三、共价键
1、共价键的成键本质:
成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间电子云密度增加,体系能量降低。
2、共价键类型:
(1)σ键和π键
(2)极性键和非极性键
(3)配位键:一类特殊的共价键,一个原子提供空轨道,另一个原子提供一对电子所形成的共价键。
①配位化合物:金属离子与配位体之间通过配位键形成的化合物。如:Cu(H2O)4SO4、Cu(NH3)4(OH)2、Ag(NH3)2OH、Fe(SCN) 3等。
②配位化合物的组成:
3、共价键的三个键参数
(1)键长、键能决定共价键的强弱和分子的稳定性,键角决定分子空间构型和分子的极性。
(2)键能与反应热:反应热=生成物键能总和-反应物键能总和
四、分子的空间构型
1、等电子原理
原子总数相同、价电子总数相同的分子具有相似的化学键特征,许多性质是相似的,此原理称为等电子原理。
(1)等电子体的判断方法:在微粒的组成上,微粒所含原子数目相同;在微粒的构成上,微粒所含价电子数目相同;在微粒的结构上,微粒中原子的空间排列方式相同。(等电子的推断常用转换法,如CO2=CO+O=N2+O=N2O=N2+N—=N3—或SO2=O+O2=O3=N—+O2= NO2—)
(2)等电子原理的应用:利用等电子体的性质相似,空间构型相同,可运用来预测分子空间的构型和性质。
2、价电子互斥理论
(1)价电子互斥理论的基本要点:ABn型分子(离子)中中心原子A周围的价电子对的几何构型,主要取决于价电子对数(n),价电子对尽量远离,使它们之间斥力最小。
(2)ABn型分子价层电子对的计算方法:
①对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如:PCl5中
②O、S作为配位原子时按不提供价电子计算,作中心原子时价电子数为6;
③离子的价电子对数计算
如:NH4+:;SO42- :
3、杂化轨道理论
(1)杂化轨道理论的基本要点:
①能量相近的原子轨道才能参与杂化。
②杂化后的轨道一头大,一头小,电子云密度大的一端与成键原子的原子轨道沿键轴方向重叠,形成σ键;由于杂化后原子轨道重叠更大,形成的共价键比原有原子轨道形成的共价键稳定。
③杂化轨道能量相同,成分相同,如:每个sp3杂化轨道占有1个s轨道、3个p轨道。
④杂化轨道总数等于参与杂化的原子轨道数目之和。
(2)s、p杂化轨道和简单分子几何构型的关系
(3)杂化轨道的应用范围:杂化轨道只应用于形成σ键或者用来容纳未参加成键的孤对电子。
(4)中心原子杂化方式的判断方法:看中心原子有没有形成双键或叁键,如果有1个叁键,则其中有2个π键,用去了2个p轨道,形成的是sp杂化;如果有1个双键则其中有1个π键,形成的是sp2杂化;如果全部是单键,则形成的是sp3杂化。
4、分子空间构型、中心原子杂化类型和分子极性的关系
五、分子的性质
1、分子间作用力(范德华力和氢键)
(1)分子间作用力和化学键的比较
(2)范德华力与氢键的比较
2、极性分子和非极性分子
(1)极性分子和非极性分子
<1>非极性分子:从整个分子看,分子里电荷的分布是对称的。如:①只由非极性键构成的同种元素的双原子分子:H2、Cl2、N2等;②只由极性键构成,空间构型对称的多原子分子:CO2、CS2、BF3、CH4、CCl4等;③极性键非极性键都有的:CH2=CH2、CH≡CH、。
<2>极性分子:整个分子电荷分布不对称。如:①不同元素的双原子分子如:HCl,HF等。②折线型分子,如H2O、H2S等。③三角锥形分子如NH3等。
(2)共价键的极性和分子极性的关系:
两者研究对象不同,键的极性研究的是原子,而分子的极性研究的是分子本身;两者研究的方向不同,键的极性研究的是共用电子对的偏离与偏向,而分子的极性研究的是分子中电荷分布是否均匀。非极性分子中,可能含有极性键,也可能含有非极性键,如二氧化碳、甲烷、四氯化碳、三氟化硼等只含有极性键,非金属单质F2、N2、P4、S8等只含有非极性键,C2H6、C2H4、C2H2等既含有极性键又含有非极性键;极性分子中,一定含有极性键,可能含有非极性键,如HCl、H2S、H2O2等。
(3)分子极性的判断方法
①单原子分子:分子中不存在化学键,故没有极性分子或非极性分子之说,如He、Ne等。
②双原子分子:若含极性键,就是极性分子,如HCl、HBr等;若含非极性键,就是非极性分子,如O2、I2等。
③以极性键结合的多原子分子,主要由分子中各键在空间的排列位置决定分子的极性。若分子中的电荷分布均匀,即排列位置对称,则为非极性分子,如BF3、CH4等。若分子中的电荷分布不均匀,即排列位置不对称,则为极性分子,如NH3、SO2等。
④根据ABn的中心原子A的最外层价电子是否全部参与形成了同样的共价键。(或A是否达最高价)
(4)相似相溶原理
①相似相溶原理:极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。
②相似相溶原理的适用范围:“相似相溶”中“相似”指的是分子的极性相似。
③如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。
3、有机物分子的手性和无机含氧酸的酸性
(1)手性分子
①手性分子:具有完全相同的组成和原子排列的一对分子,如同左手与右手一样互为镜像,却在三维空间里不能重叠,互称手性异构体(又称对映异构体、光学异构体)。含有手性异构体的分子叫做手性分子。
②手性分子的判断方法:判断一种有机物是否具有手性异构体,可以看其含有的碳原子是否连有四个不同的原子或原子团,符合上述条件的碳原子叫做手性碳原子。手性碳原子必须是饱和碳原子,饱和碳原子所连有的原子和原子团必须不同。
(2)无机含氧酸分子的酸性
①酸的元数=酸中羟基上的氢原子数,不一定等于酸中的氢原子数(有的酸中有些氢原子不是连在氧原子上)
②含氧酸可表示为:(HO)mROn,酸的强度与酸中的非羟基氧原子数n有关,n越大,酸性越强。
n=0 弱酸n=1 中强酸 n=2强酸 n=3 超强酸
六、晶体的结构和性质
1、四大晶体的比较
2、典型晶体的结构特征
(1)NaCl
属于离子晶体。晶胞中每个Na+周围吸引着6个Cl-,这些Cl-构成的几何图形是正八面体,每个Cl-周围吸引着6个Na+,Na+、Cl-个数比为1:1,每个Na+与12个Na+等距离相邻,每个氯化钠晶胞含有4个Na+和4个Cl-。
(2)CsCl
属于离子晶体。晶胞中每个Cl—(或Cs+)周围与之最接近且距离相等的Cs+(或Cl—)共有8个,这几个Cs+(或Cl—)在空间构成的几何构型为立方体,在每个Cs+周围距离相等且最近的Cs+共有6个,这几个Cs+在空间构成的几何构型为正八面体,一个氯化铯晶胞含有1个Cs+和1个Cl—。
(3)金刚石(空间网状结构)
属于原子晶体。晶体中每个C原子和4个C原子形成4个共价键,成为正四面体结构,C原子与碳碳键个数比为1:2,最小环由6个C原子组成,每个C原子被12个最小环所共用;每个最小环含有1/2个C原子。
(4)SiO2
属于原子晶体。晶体中每个Si原子周围吸引着4个O原子,每个O原子周围吸引着2个Si原子,Si、O原子个数比为1:2,Si原子与Si—O键个数比为1:4,O原子与Si—O键个数比为1:2,最小环由12个原子组成。
(5)干冰
属于分子晶体。晶胞中每个CO2分子周围最近且等距离的CO2有12个。1个晶胞中含有4个CO2。
(6)石墨
属于过渡性晶体。是分层的平面网状结构,层内C原子以共价键与周围的3个C原子结合,层间为范德华力。晶体中每个C原子被3个六边形共用,平均每个环占有2个碳原子。晶体中碳原子数、碳环数和碳碳单键数之比为2:3。
(7)金属晶体
金属Po(钋)中金属原子堆积方式是简单立方堆积,原子的配位数为6,一个晶胞中含有1个原子。金属Na、K、Cr、Mo(钼)、W等中金属原子堆积方式是体心立方堆积,原子的配位数为8,一个晶胞中含有2个原子。金属Mg、Zn、Ti等中金属原子堆积方式是六方堆积,原子的配位数为12,一个晶胞中含有2个原子。金属Au、Ag、Cu、Al等中金属原子堆积方式是面心立方堆积,原子的配位数为12,一个晶胞中含有4个原子。
3、物质熔沸点高低的判断
(1)不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体
(2)同种类型晶体:构成晶体质点间的作用力大,则熔沸点高,反之则小。
①离子晶体:结构相似且化学式中各离子个数比相同的离子晶体中离子半径小(或阴、阳离子半径之和越小的),键能越强的,熔、沸点就越高。如NaCl、NaBr、Nal;NaCl、KCl、RbCl等的熔、沸点依次降低。离子所带电荷大的熔点较高。如:MgO熔点高于NaCl。
②分子晶体:在组成结构均相似的分子晶体中,式量大的,分子间作用力就大,熔点也高。如:F2、Cl2、Br2、I2和HCl、HBr、HI等均随式量增大。熔、沸点升高。但结构相似的分子晶体,有氢键存在熔、沸点较高。
③原子晶体:在原子晶体中,只要成键原子半径小,键能大的,熔点就高。如金刚石、金刚砂(碳化硅)、晶体硅的熔、沸点逐渐降低。
④金属晶体:在元素周期表中,主族数越大,金属原子半径越小,其熔、沸点也就越高。如ⅢA的Al,ⅡA的Mg,IA的Na,熔、沸点就依次降低。而在同一主族中,金属原子半径越小的,其熔沸点越高。
选修四
1、吸热反应与放热反应的区别
反应是吸热还是放热与反应的条件没有必然的联系,而决定于反应物和生成物具有的总能量(或焓)的相对大小。
2、常见的放热反应
①一切燃烧反应;
②活泼金属与酸或水的反应;
③酸碱中和反应;
④铝热反应;
⑤大多数化合反应(但有些化合反应是吸热反应,如:N2+O2=2NO,CO2+C=2CO等均为吸热反应)。
3、常见的吸热反应
①Ba(OH)2·8H2O与NH4Cl反应;
②大多数分解反应是吸热反应
③水解反应
1.根据热化学方程式计算
反应热与反应物各物质的物质的量成正比。
2.根据反应物和生成物的总能量计算
ΔH=E生成物-E反应物。
3.根据键能计算
ΔH=反应物的键能总和-生成物的键能总和。
4.根据盖斯定律计算
化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与反应的途径无关。即如果一个反应可以分步进行,则各分步反应的反应热之和与该反应一步完成时的反应热是相同的。
5.根据物质燃烧放热数值计算:Q(放)=n(可燃物)×|ΔH|。
1、化学反应速率
化学反应速率通常用单位时间内反应物浓度和生成物浓度的变化来表示
2、影响化学反应速率的因素
1)内因(主要因素)
反应物本身的性质。
2)外因:温度、浓度、压强、催化剂
1、化学平衡状态:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的浓度保持不变的状态。
2、化学平衡状态的特征
3、判断化学平衡状态的依据
1.可逆反应中旧化学平衡的破坏、新化学平衡的建立,由原平衡状态向新化学平衡状态的转化过程,称为化学平衡的移动。
2、化学平衡移动与化学反应速率的关系
(1)v正>v逆:平衡向正反应方向移动。
(2)v正=v逆:反应达到平衡状态,不发生平衡移动。
(3)v正<v逆:平衡向逆反应方向移动。
3、“惰性气体”对化学平衡的影响
①恒温、恒容条件
原平衡体系体系总压强增大―→体系中各组分的浓度不变―→平衡不移动。
②恒温、恒压条件
原平衡体系容器容积增大,各反应气体的分压减小―→体系中各组分的浓度同倍数减小
4.勒夏特列原理
定义:如果改变影响平衡的一个条件(如C、P或T等),平衡就向能够减弱这种改变的方向移动。
原理适用的范围:已达平衡的体系、所有的平衡状态(如溶解平衡、化学平衡、电离平衡、水解平衡等)和只限于改变影响平衡的一个条件。
勒夏特列原理中“减弱这种改变”的解释:外界条件改变使平衡发生移动的结果,是减弱对这种条件的改变,而不是抵消这种改变,也就是说:外界因素对平衡体系的影响占主要方面。
一、弱电解质的电离
1.电离平衡:
在一定的条件下,当电解质分子电离成离子的速率和离子结合成分子的速率相等时,电离过程就达到了平衡状态 ,这叫电离平衡。
2.影响电离平衡的因素:
A、温度:电离一般吸热,升温有利于电离。
B、浓度:浓度越大,电离程度 越小 ;溶液稀释时,电离平衡向着电离的方向移动。
C、同离子效应:在弱电解质溶液里加入与弱电解质具有相同离子的电解质,会减弱电离。
D、其他外加试剂:加入能与弱电解质的电离产生的某种离子反应的物质时,有利于电离。
3、电离常数:
在一定条件下,弱电解质在达到电离平衡时,溶液中电离所生成的各种离子浓度的乘积,跟溶液中未电离的分子浓度的比是一个常数。叫做电离平衡常数,(一般用Ka表示酸,Kb表示碱。)
表示方法:ABA++B- Ki=[ A+][B-]/[AB]
4.影响因素:
a、电离常数的大小主要由物质的本性决定。
b、电离常数受温度变化影响,不受浓度变化影响,在室温下一般变化不大。
c、同一温度下,不同弱酸,电离常数越大,其电离程度越大,酸性越强。如:H2SO3>H3PO4>HF>CH3COOH>H2CO3>H2S>HClO
二、水的电离
1. 水的离子积:KW= c[H+]·c[OH-]
25℃时,[H+]=[OH-]=10-7 mol/L ; KW= [H+]·[OH-] = 1*10-14
注意:KW只与温度有关,温度一定,则KW值一定,KW不仅适用于纯水,适用于任何溶液(酸、碱、盐)
2、影响水电离平衡的外界因素:
①酸、碱:抑制水的电离
②温度:促进水的电离(水的电离是 吸 热的)
③易水解的盐:促进水的电离
3、溶液的酸碱性和pH:
(1)pH=-lgc[H+]
(2)pH的测定方法:
酸碱指示剂—— 甲基橙 、石蕊 、酚酞 。
变色范围:甲基橙3.1~4.4(橙色) 石蕊5.0~8.0(紫色) 酚酞8.2~10.0(浅红色)
pH试纸—操作 玻璃棒蘸取未知液体在试纸上,然后与标准比色卡对比即可。
注意:①事先不能用水湿润PH试纸;②广泛pH试纸只能读取整数值或范围
三、混合液的pH值计算方法公式
1、强酸与强酸的混合:
(先求[H+]混:将两种酸中的H+离子物质的量相加除以总体积,再求其它) [H+]混=([H+]1V1+[H+]2V2)/(V1+V2)
2、强碱与强碱的混合:
(先求[OH-]混:将两种酸中的OH‑离子物质的量相加除以总体积,再求其它) [OH-]混=([OH-]1V1+[OH-]2V2)/(V1+V2) (注意:不能直接计算[H+]混)
3、强酸与强碱的混合:
(先据H++ OH-==H2O计算余下的H+或OH-,①H+有余,则用余下的H+数除以溶液总体积求[H+]混;OH-有余,则用余下的OH-数除以溶液总体积求[OH-]混,再求其它)
四、稀释过程溶液pH值的变化规律:
1、强酸溶液:稀释10n倍时,pH稀=pH原+n (但始终不能大于或等于7)
2、弱酸溶液:稀释10n倍时,pH稀〈pH原+n (但始终不能大于或等于7)
3、强碱溶液:稀释10n倍时,pH稀=pH原-n (但始终不能小于或等于7)
4、弱碱溶液:稀释10n倍时,pH稀〉pH原-n (但始终不能小于或等于7)
5、不论任何溶液,稀释时pH均是向7靠近(即向中性靠近);任何溶液无限稀释后pH均接近7。
6、稀释时,弱酸、弱碱和水解的盐溶液的pH变化得慢,强酸、强碱变化得快。
五、酸碱中和滴定:
1、中和滴定的原理
实质:H++OH—=H2O 即酸能提供的H+和碱能提供的OH-物质的量相等。
2、中和滴定的操作过程:
准备:检漏、洗涤、润洗、装液、赶气泡、调液面。(洗涤:用洗液洗→检漏:滴定管是否漏水→用水洗→用标准液洗(或待测液洗)→装溶液→排气泡→调液面→记数据V(始)
3、酸碱中和滴定的误差分析
误差分析:利用n酸c酸V酸=n碱c碱V碱进行分析
式中:
n——酸或碱中氢原子或氢氧根离子数;
c——酸或碱的物质的量浓度;
V——酸或碱溶液的体积。当用酸去滴定碱确定碱的浓度时。
七、盐类的水解(只有可溶于水的盐才水解)
1、盐类水解:
在水溶液中盐电离出来的离子跟水电离出来的H+或OH-结合生成弱电解质的反应。
2、水解的实质:
水溶液中盐电离出来的离子跟水电离出来的H+或OH-结合,破坏水的电离,是平衡向右移动,促进水的电离。
3、盐类水解规律:
①有弱才水解,无弱不水解,越弱越水解;谁强显谁性,两弱都水解,同强显中性。
②多元弱酸根,浓度相同时正酸根比酸式酸根水解程度大,碱性更强。
4、盐类水解的特点:
(1)可逆(与中和反应互逆)
(2)程度小
(3)吸热
5、影响盐类水解的外界因素:
①温度:温度越 高 水解程度越大(水解吸热,越热越水解)
②浓度:浓度越小,水解程度越 大 (越稀越水解)
③酸碱:促进或抑制盐的水解(H+促进 阴离子 水解而 抑制 阳离子水解;OH-促进阳离子水解而抑制阴离子水解)
6、酸式盐溶液的酸碱性:
①只电离不水解:如HSO4- 显 酸 性
②电离程度>水解程度,显 酸 性 (如:HSO3-、H2PO4-)
③水解程度>电离程度,显 碱 性(如:HCO3-、HS-、HPO42-)
7、双水解反应:
(1)构成盐的阴阳离子均能发生水解的反应。双水解反应相互促进,水解程度较大,有的甚至水解完全。使得平衡向右移。
(2)常见的双水解反应完全的为:Fe3+、Al3+与AlO2-、CO32-(HCO3-)、S2-(HS-)、SO32-(HSO3-);S2-与NH4+;CO32-(HCO3-)与NH4+其特点是相互水解成沉淀或气体。双水解完全的离子方程式配平依据是两边电荷平衡,如:2Al3++3S2- + 6H2O == 2Al(OH)3↓+3H2S↑
8、水解平衡常数(Kh)
对于强碱弱酸盐:Kh=Kw/Ka(Kw为该温度下水的离子积,Ka为该条件下该弱酸根形成的弱酸的电离平衡常数)
对于强酸弱碱盐:Kh=Kw/Kb(Kw为该温度下水的离子积,Kb为该条件下该弱碱根形成的弱碱的电离平衡常数)
八、溶液中微粒浓度的大小比较
基本原则:抓住溶液中微粒浓度必须满足的三种守恒关系:
①电荷守恒::任何溶液均显电 中 性,各阳离子浓度与其所带电荷数的乘积之和=各阴离子浓度与其所带电荷数的乘积之和
②物料守恒:(即原子个数守恒或质量守恒)
某原子的总量(或总浓度)=其以各种形式存在的所有微粒的量(或浓度)之和
③质子守恒:即水电离出的H+浓度与OH-浓度相等。
九、难溶电解质的溶解平衡
1、难溶电解质的溶解平衡的一些常见知识
(1)溶解度 小于 0.01g的电解质称难溶电解质。
(2)反应后离子浓度降至1*10-5以下的反应为完全反应。如酸碱中和时[H+]降至10-7mol/L<10-5mol/L,故为完全反应,用“=”,常见的难溶物在水中的离子浓度均远低于10-5mol/L,故均用“=”。
(3)难溶并非不溶,任何难溶物在水中均存在溶解平衡。
2、溶解平衡方程式的书写
意在沉淀后用(s)标明状态,并用“⇌”。如:Ag2S(s)⇌ 2Ag+(aq)+S2-(aq)
3、沉淀生成的三种主要方式
(1)加沉淀剂法:Ksp越小(即沉淀越难溶),沉淀越完全;沉淀剂过量能使沉淀更完全。
(2)调pH值除某些易水解的金属阳离子:如加MgO除去MgCl2溶液中FeCl3。
(3)氧化还原沉淀法:
4、沉淀的溶解:
沉淀的溶解就是使溶解平衡正向移动。常采用的方法有:①酸碱;②氧化还原;③沉淀转化。
5、沉淀的转化:
溶解度大的生成溶解度小的,溶解度小的生成溶解度更小的。
如:AgNO3→AgCl(白色沉淀)→ AgBr(淡黄色)→AgI (黄色)→ Ag2S(黑色)
6、溶度积(Ksp)
1)、定义:在一定条件下,难溶电解质电解质溶解成离子的速率等于离子重新结合成沉淀的速率,溶液中各离子的浓度保持不变的状态。
2)、表达式:AmBn(s) mAn+(aq)+nBm-(aq)
Ksp= [c(An+)]m •[c(Bm-)]n
3)、影响因素:
外因:①浓度:加水,平衡向溶解方向移动。
②温度:升温,多数平衡向溶解方向移动。
一、原电池的工作原理及应用
1.概念和反应本质
原电池是把化学能转化为电能的装置,其反应本质是氧化还原反应。
2.原电池的构成条件
(1)一看反应:看是否有能自发进行的氧化还原反应发生(一般是活泼性强的金属与电解质溶液反应)。
(2)二看两电极:一般是活泼性不同的两电极。
(3)三看是否形成闭合回路,形成闭合回路需三个条件:①电解质溶液;②两电极直接或间接接触;③两电极插入电解质溶液中。
二、电解的原理
1.电解和电解池
(1)电解:在电流作用下,电解质在两个电极上分别发生氧化反应和还原反应的过程。
(2)电解池:电能转化为化学能的装置。
(3)电解池的构成
①有与电源相连的两个电极。
②电解质溶液(或熔融电解质)。
③形成闭合回路。
2.电解池的工作原理
(1)电极名称及电极反应式(电解CuCl2溶液为例)
总反应式:
(2)电子和离子的移动方向
①电子:从电源负极流出后,流向电解池阴极;从电解池的阳极流出后流向电源的正极。
②离子:阳离子移向电解池的阴极,阴离子移向电解池的阳极。
3.阴阳两极上放电顺序
(1)阴极:(与电极材料无关)。氧化性强的先放电,放电顺序:
(2)阳极:若是活性电极作阳极,则活性电极首先失电子,发生氧化反应。
若是惰性电极作阳极,放电顺序为
三、化学电源
(1)碱性锌锰干电池——一次电池
正极反应:2MnO2+2H2O+2e-===2MnOOH+2OH-;
负极反应:Zn+2OH–2e-===Zn(OH)2;
总反应:Zn+2MnO2+2H2O===2MnOOH+Zn(OH)2。
(2)锌银电池——一次电池
负极反应:Zn+2OH–2e-===Zn(OH)2;
正极反应:Ag2O+H2O+2e-===2Ag+2OH-;
总反应:Zn+Ag2O+H2O===Zn(OH)2+2Ag。
(3)二次电池(可充电电池)
铅蓄电池是最常见的二次电池,负极材料是Pb,正极材料是PbO2。
①放电时的反应
a.负极反应:Pb+SO42–2e-===PbSO4;
b.正极反应:PbO2+4H++SO42-+2e-===PbSO4+2H2O;
c.总反应:Pb+PbO2+2H2SO4===2PbSO4+2H2O。
②充电时的反应
a.阴极反应:PbSO4+2e-===Pb+SO42-;
b.阳极反应:PbSO4+2H2O-2e-===PbO2+4H++SO42-;
c.总反应:2PbSO4+2H2O电解=====Pb+PbO2+2H2SO4。
四、电解原理的应用
1.氯碱工业
(1)电极反应
阳极反应式:2Cl–2e-===Cl2↑(氧化反应)
阴极反应式:2H++2e-===H2↑(还原反应)
(2)总反应方程式
2NaCl+2H2O2NaOH+H2↑+Cl2↑
(3)氯碱工业生产流程图
2.电镀
(1)镀件作阴极,镀层金属银作阳极。
(2)电解质溶液是AgNO3溶液等含镀层金属阳离子的盐溶液。
(3)电极反应:
阳极:Ag-e-===Ag+;
阴极:Ag++e-===Ag。
(4)特点:阳极溶解,阴极沉积,电镀液的浓度不变。
3.电解精炼铜
(1)电极材料:阳极为粗铜;阴极为纯铜。
(2)电解质溶液:含Cu2+的盐溶液。
(3)电极反应:
阳极:Zn-2e-===Zn2+、Fe-2e-===Fe2+、Ni-2e-===Ni2+、Cu-2e-===Cu2+;
阴极:Cu2++2e-===Cu。
4.电冶金
利用电解熔融盐的方法来冶炼活泼金属Na、Ca、Mg、Al等。
(1)冶炼钠
2NaCl(熔融)2Na+Cl2↑
电极反应:
阳极:2Cl–2e-===Cl2↑;阴极:2Na++2e-===2Na。
(2)冶炼铝
2Al2O3(熔融)4Al+3O2↑
电极反应:
阳极:6O2–12e-===3O2↑;
阴极:4Al3++12e-===4Al。
五、金属的腐蚀与防护
1.金属腐蚀的本质
金属原子失去电子变为金属阳离子,金属发生氧化反应。
2.金属腐蚀的类型
(1)化学腐蚀与电化学腐蚀
类型
化学腐蚀
电化学腐蚀
条件
金属跟非金属单质直接接触
不纯金属或合金跟电解质溶液接触
现象
无电流产生
有微弱电流产生
本质
金属被氧化
较活泼金属被氧化
联系
两者往往同时发生,电化学腐蚀更普遍
(2)析氢腐蚀与吸氧腐蚀
以钢铁的腐蚀为例进行分析:
类型
析氢腐蚀
吸氧腐蚀
条件
水膜酸性较强(pH≤4.3)
水膜酸性很弱或呈中性
电极反应
负极
Fe-2e-===Fe2+
正极
2H++2e-===H2↑
O2+2H2O+4e-===4OH-
总反应式
Fe+2H+===Fe2++H2↑
2Fe+O2+2H2O===2Fe(OH)2
联系
吸氧腐蚀更普遍
3. 金属的防护
(1)电化学防护
①牺牲阳极的阴极保护法—原电池原理
a.负极:比被保护金属活泼的金属;
b.正极:被保护的金属设备。
②外加电流的阴极保护法—电解原理
a.阴极:被保护的金属设备;
b.阳极:惰性金属或石墨。
(2)改变金属的内部结构,如制成合金、不锈钢等。
(3)加防护层,如在金属表面喷油漆、涂油脂、电镀、喷镀或表面钝化等方法。
选修五
一、物理性质
1. 状态
固态:饱和高级脂肪酸、脂肪、TNT、萘、苯酚、葡萄糖、果糖、麦芽糖、淀粉、纤维素。
气态:C4以下的烷烃、烯烃、炔烃、甲醛、一氯甲烷。
液态:硝基苯、溴乙烷、乙酸乙酯、石油、乙二醇、甘油。
2. 气味
无味:甲烷、乙炔(常因混有PH3、H2S和AsH3而带有臭味)。
稍有气味:乙烯。
特殊气味:苯及同系物、萘、石油、苯酚。
刺激性:甲醛、甲酸、乙酸、乙醛。
3. 颜色
白色:葡萄糖、淀粉。
淡黄色:TNT、不纯的硝基苯。
4. 密度
比水轻的:苯及苯的同系物、一氯代烃、乙醇、低级酯、汽油。
比水重的:硝基苯、溴苯、乙二醇、丙三醇、CCl4、氯仿、溴代烃、碘代烃。
5. 挥发性
乙醇、乙醛、乙酸。
6. 水溶性
难溶:高级脂肪酸、酯、硝基苯、溴苯、烷烃、烯烃、炔烃、苯及同系物、萘、石油、卤代烃、TNT、氯仿、CCl4。
易溶:甲醛、乙酸、乙二醇、苯磺酸、丙三醇。
与水混溶:乙醇、乙酸、乙醛、甲酸、丙三醇。
二、能发生取代反应的物质
1. 烷烃与卤素单质:
条件:光照
2. 苯及苯的同系物与
1)卤素单质,条件– Fe作催化剂;
2)浓硝酸: 50℃– 60℃水浴;
3)浓硫酸: 70℃–80℃水浴。
3. 卤代烃的水解:NaOH的水溶液。
4. 醇与氢卤酸。
5. 乙醇与浓硫酸在140℃时的脱水反应。
6. 酸与醇的酯化反应:浓硫酸、加热。
7. 酯类的水解: 无机酸或碱催化。
8. 酚与浓溴水、浓硝酸。
三、能发生加成反应的物质
1. 烯烃、炔烃、二烯烃、苯乙烯的加成:H2、卤化氢、水、卤素单质。
2. 苯及苯的同系物的加成:H2、Cl2。
3. 不饱和烃的衍生物的加成:包括卤代烯烃、卤代炔烃、烯醇、烯醛、烯酸、烯酸酯、烯酸盐等。
4. 含醛基的化合物的加成:HCN、H2。
四、六种方法得乙醇(醇)
1. 乙醛(醛)还原法:CH3CHO + H2 –催化剂 加热→ CH3CH2OH
2. 卤代烃水解法:C2H5X +H2O– NaOH 加热→ C2H5OH + HX
3. 某酸乙(某)酯水解法:RCOOC2H5 + H2O–NaOH→ RCOOH + C2H5OH
4. 乙醇钠水解法:C2H5ONa +H2O → C2H5OH + NaOH
5. 乙烯水化法:CH2=CH2 +H2O –H2SO4或H3PO4,加热,加压→ C2H5OH
6. 葡萄糖发酵法:C6H12O6 –酒化酶→ 2C2H5OH + 2CO2
五、能发生银镜反应的物质
1. 所有的醛(RCHO)
2. 甲酸、甲酸盐、甲酸酯
3. 葡萄糖
六、乙烯的制取和性质
1. 化学方程式 C2H5OH– 浓H2SO4,170℃→ CH2=CH2 + H2O
2. 制取乙烯采用哪套装置?此装置还可以制备哪些气体?
分液漏斗、圆底烧瓶(加热)一套装置。
此装置还可以制Cl2、HCl、SO2等。
3. 预先向烧瓶中加几片碎瓷片是何目的?
防止暴沸。
4. 乙醇和浓硫酸混合,有时得不到乙烯,这可能是什么原因造成的?
这主要是因为未使温度迅速升高到170℃所致。因为在140℃乙醇将发生分子间脱水得乙醚,方程式如下:
2C2H5OH– 浓H2SO4,140℃→ C2H5OC2H5 + H2O
5. 温度计的水银球位置和作用如何?
混合液液面下;用于测混合液的温度(控制温度)。
6. 浓H2SO4的作用?
催化剂,吸水剂。
7. 反应后期,反应液有时会变黑,且有刺激性气味的气体产生,为何?
浓硫酸将乙醇炭化和氧化了,产生的刺激性气味的气体是SO2。
C + 2H2SO4(浓)– 加热→ CO2 + 2SO2 + 2H2O
七、乙炔的制取和性质
1. 化学方程式 CaC2 + 2H2O→Ca(OH)2 + C2H2
2. 此实验能否用启普发生器,为何?
不能.。
1)CaC2吸水性强,与水反应剧烈,若用启普发生器,不易控制它与水的反应。
2)反应放热,而启普发生器是不能承受热量的。
3)反应生成的Ca(OH)2 微溶于水,会堵塞球形漏斗的下端口。
3. 用饱和食盐水代替水,这是为何?
减缓反应速率,用以得到平稳的乙炔气流。
4. 简易装置中在试管口附近放一团棉花,其作用如何?
防止生成的泡沫从导管中喷出。
5. 点燃纯净的甲烷、乙烯和乙炔,其燃烧现象有何区别?
甲烷:淡蓝色火焰;
乙烯: 明亮火焰,有黑烟;
乙炔: 明亮的火焰,有浓烟。
6. 乙炔使溴水或酸性高锰酸钾溶液褪色的速度比较乙烯,是快还是慢,为何?
乙炔慢,因为乙炔分子中叁键的键能比乙烯分子中双键键能大,断键难。
八、溴苯的制取
1. 化学方程式 C6H6 + Br2–-Fe→C6H5Br + HBr
2. 装置中长导管的作用是什么?
导气和冷凝。
3. 所加铁粉的作用如何?
催化剂(严格地讲真正起催化作用的是FeBr3)。
4. 导管末端产生的白雾的成分是什么?产生的原因?怎样吸收和检验?锥形瓶中,导管为何不能伸入液面下?
白雾是氢溴酸小液滴,由于HBr极易溶于水而形成。用水吸收,检验用酸化的AgNO3溶液,加用酸化的AgNO3溶液后,产生淡黄色沉淀。导管口不伸入液面下是为了防止水倒吸。
5. 将反应后的液体倒入盛有冷水的烧杯中,有何现象?
水面下有褐色的油状液体(溴苯比水重且不溶于水)。
6. 怎样洗涤生成物使之恢复原色?
溴苯因溶有溴而呈褐色,多次水洗或稀NaOH溶液洗并分液可使其恢复原来的无色。
九、制取硝基苯
1. 化学方程式 C6H6 + HNO3–浓H2SO4,水浴加热→ C6H5NO2 + H2O
2. 实验中,浓HNO3、浓H2SO4的作用如何?
浓HNO3是反应物(硝化剂);
浓H2SO4是催化剂和吸水剂。
3. 使浓HNO3和浓H2SO4的混合酸冷却到50–60℃以下,这是为何?
①防止浓NHO3分解;
②防止混合放出的热使苯和浓HNO3挥发;
③温度过高有副反应发生(生成苯磺酸和间二硝基苯)。
4. 盛反应液的大试管上端插一段导管,有何作用?
冷凝回流(苯和浓硝酸)。
5. 温度计的水银球的位置和作用如何?
插在水浴中,用以测定水浴的温度。
6. 为何用水浴加热?
水浴加热,易于控制温度。
7. 制得的产物的颜色、密度、水溶性、气味如何?怎样洗涤而使之恢复原色?
淡黄色(溶有NO2,本色应为无色),油状液体,密度大于水,不溶于水,有苦杏仁味,多次水洗或NaOH溶液洗涤。
十、制取乙酸乙酯
1. 化学方程式 CH3COOH +CH3CH2OH –浓H2SO4,加热→CH3COOCH2CH3+ H2O
2. 弯曲导管的作用如何?
导气兼冷凝回流(乙酸和乙醇)。
3. 为什么导管口不能伸入Na2CO3溶液中?
防止溶液倒吸。
4. 浓硫酸的作用如何?
催化剂和吸水剂。
5. 饱和Na2CO3溶液的作用如何?
①乙酸乙酯在饱和碳酸钠溶液中的溶解度小,利于分层;
②乙酸与Na2CO3反应,生成无味的CH3COONa而被除去;
③C2H5OH被Na2CO3溶液吸收,便于除去乙酸及乙醇气味的干扰。
1.文章《【化学为什么ds区只有一点】考前速览|高中三年「化学」基础知识点汇总(超全)》援引自互联网,为网友投稿收集整理,仅供学习和研究使用,内容仅代表作者本人观点,与本网站无关,侵删请点击页脚联系方式。
2.文章《【化学为什么ds区只有一点】考前速览|高中三年「化学」基础知识点汇总(超全)》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
相关推荐
- . 现代买票为什么带上携程保险
- . 潮阳怎么去广州南站
- . 湖南马拉河怎么样
- . 烧纸为什么到三岔路口
- . 百色为什么这么热
- . 神州租车怎么样
- . 芜湖方特哪个适合儿童
- . 护肤品保养液是什么类目
- . 早晚的护肤保养有哪些项目
- . 女孩护肤品怎么保养的最好