在主机厂的新车型发布会上,“新车型是基于最新的XXX纯电平台制造的,具有XXX的优点。”经常能听到宣传。一般来说,品牌为了通用性,只制造一个纯电动平台,制造其他车型。

但是奥迪不一样。现阶段,光顺电平台有4个平台,分别是高性能跑车的J1平台,也就是保时捷的TyKan。油改性MLBevo平台;与大众共享的web平台,即ID系列的案例,比如奥迪的纯战Q4,是大众ID.4的案例交换。最后是比较先进的PPE平台,与保时捷共同开发,第一款车型是Q6,其次是A6 Avant e-tron。

图1奥迪四大纯电动平台

E-tron GT基于J1平台构建,是第一款配备800V高压系统的车型,在5分钟内充电了100公里的寿命。下面主要从高压系统、网络体系结构、ADAS几个方面进行梳理。

01.

高压系统

所谓高压系统是电压在250V以上的设备。对于E-tron GT,如图2所示,有高压电池、高压Booster、充电器等。

图2高压系统概述

图3高压电池概述

在高压系统中,电源电池显然是大头。其爆炸程度符合逻辑,如图3所示。首先,让我们揭示一下技术细节,动力电池的基本参数。

1.模块数为33个。

核心是162s2p。

最大充电功率为270千瓦;是。

电池组重量约为650公斤;是。

额定电压为726V是。

如图4所示,电池模块将e-tron GT电池分为两层,左侧是底部电池连接,右侧18、19和20是顶部电池连接。

图5电池模块连接方法

每个电池模块内部都集成了模块控制单元,用于测量6枚内核的电压、温度和高达100毫安的手动平衡。也就是说,能量通过电阻热消耗。被动均衡的启动条件是电池管理系统使电池的电压偏差达到20%,电池组的电池容量超过30%。

模块控制器安装在模块的水平纵梁位置,如图6所示。

图6模块之间的连接和控制器安装位置

每个模块的内部由12个内核组成,由6个串行2连接,每个内核的额定电压为3.65V,容量为66Ah,模块的外部电压为21.9V,如图7所示。

s=1696132050&x-signature=Ur4eX85GuhPSIJ86tI4L77ZXV94%3D&index=5" width="640" height="414"/>

图7 模组内部

高压Booster

高压booster是车辆内部电压的转换模块,也是能量分配模块,如图8所示。

图8 高压booster

它具有三条电压转换链路:

1.将400V转为800V的链路,主要是用于当外部充电桩为400V时,需要将其转换为800V作为动力电池的输入电压。

其升压原理是一个电荷泵,将电容器串联起来,示意图如图9所示。

图9 400V升800V示意图

2.将800V转为400V的链路,因为除了动力电池之外,其他高压部件均为400V,包括空调压缩机、电驱动力总成等。

3.将800V转为12V,给低压蓄电池充电以及电压用电器供电,这不仅是在车辆使用过程中起作用,当车辆停在停车场很长时间时,通常会出现电压蓄电池亏电,给车主带来麻烦,e-tron GT上做了个人性化的处理,当系统检测到蓄电池电压过低时,并且动力电池电压大于10%,高压booster会自动启动给低压蓄电池充电,并且蓄电池馈电尴尬的场景。

总体来说,整个高压系统的技术比较中规中矩,在800V高压部件中,也仅有充电链路是支持的,其他高压部件还是沿用400V,不像现代的IONIQ 5的高压系统(如图10所示),基本是一步到位,全部800V。

这一点可能也可以看出,德国造车比较稳健、保守,新技术是一步一步上的,但是在当前车型也是快速迭代的背景下,这种节凑可能已经不适应了,这一点从大众的ID系列也可以看的出,一打开车门,看到座舱,总感觉回到了诺基亚时代。

图10 现代的IONIQ 5的高压系统

02.

低压12V蓄电池

e-torn GT除了是奥迪第一款使用800V充电系统之外,也是第一款低压蓄电池采用锂电池(磷酸铁锂电池)的车型,与传统的铅酸蓄电池相比,其具有:

1.重量减少,与同等容量的铅酸蓄电池相比,重量减少约50%;

2.使用寿命延长2.5倍,循环稳定性高7倍;

3.显著提高电压稳定性;

4.体积相比铅酸电池减少约20%;

蓄电池内部共集成8个电芯,以4串2的方式连接,每个电芯的额定电压为3.3V, 那蓄电池的额定电压为13.2V。电池的控制单元被安装在电池外壳顶部,并且控制线路与供电线路是分开的,而特斯拉的则是将控制板集成到内部,并且控制线路与供电线路集成到一个接插件中,相比而言,特斯拉的集成度更高。

图11 特斯拉的12V蓄电池

图13 e-torn GT的12V蓄电池

12V蓄电池在不同电压水平时的运行策略:

1.当电压大于15.5V,并且持续120s,电池将不允许充电,直到电压降到15.5V以下;

2.当电压小于10V,不在对外供电,当充电链路打开后,才会重新进行低压供电;

3.当电池电压小于8V,认为电池已经损坏,需要更换;

12V蓄电池的充电链路是:动力电池的800V经高压booster,转换为12V,为12V蓄电池充电,如14所示。

图14 12V蓄电池的充电链路

除此之外,上文也提到了,在车辆静置时,当低压蓄电池的容量低于一定值时,动力电池会自动激活为12V蓄电池充电的策略。

其具体的逻辑是当12V蓄电池的容量小于8Ah,并且动力电池的SOC大于10%,充电链路被激活,当12V蓄电池的电量达到20Ah,或者充了30分钟,充电链路会断开。在长时间静置的过程中,这个链路最多被激活8次。

03.

网络架构

网络架构是一个车辆的电气骨架,用于车载控制器控制流的交互。e-torn GT的网络架构主要由几个局域网络构成,包括舒适CAN网络、舒适CAN2网络、扩展CAN网络等。

舒适CAN网络

该网络主要是用于车门、后备箱、防盗、座椅等的控制,局域网的架构如图14所示,该网络以500kbp的CAN总线为主。

其中J136是座椅控制单元,与转向柱联动;J223是电动扰流板控制单元;J386是车门控制单元;J926是后座车门控制单元;J387是前排乘客车门控制单元;J393是舒适控制单元;G578是防盗传感器;H12是警报器喇叭;J938是后尾箱电机控制单元;J521是前排乘客控制单元,J533是数据总线诊断单元,J453是方向盘控制单元。J605是后尾箱控制单元。

图15 舒适CAN网络

舒适CAN2网络

舒适CAN2 网络主要是车辆附件的控制,包括后视镜、大灯、雨刮、座椅通风等,以LIN总线为主,如图16所示。

其中J519为板载供电控制单元;EX5为后视镜;G397为雨水和灯光传感器;J866为电动可调转向柱的控制单元;MX1/MX2分别为前左右大灯;J979为制热和空调控制器等。

图16 舒适CAN2网络

扩展CAN网络

扩展CAN网络主要连接胎压检测控制J502、变道辅助控制单元J769/770、倒车摄像系统控制单元J772、夜视系统的控制单元J853、引擎声浪模拟控制单元J1167/J1177。

图17 扩展CAN网络

Flexray网络

Flexray网络主要用于底盘线控,主要还是因为Flexray总线的安全性以及可靠性,而在国内,目前底盘线控主要还是基于CAN来做的。话不多说,直接上拓扑图,如图18所示。

其中J104是车身稳定装置,是ADAS线控制动的一部分。J234是气囊控制单元,J500是EPS电动助力转向。J527是转向柱控制单元,J539是博世的iBooster。J1121是ADAS控制单元,1-12是超声波传感器。J1019是后轮转向控制。J1234是前轴电驱动,J1235是后轴电驱动。J428为自适应巡航ECU,与主雷达相连,J1088为前左雷达,J1089为前右雷达。J769为变道辅助单元,J770为左后雷达。

图18 Flexray网络

诊断CAN/以太网网络

该网络主要连接OBD口,用于通过诊断读取内部数据,包括故障码、配置参数等,另外也可以刷新内部控制器的软件,由于有些控制器软件很大,所以现在大部分车都引入了基于以太网的诊断链路。

该网络中J533为网关,J794为Infotainment单元,J949为E-call。下图中J898为AR HUD。

图19 诊断CAN/ETH网络

总体来说,整个网络架构并没有什么新颖的地方,也没有去继承大哥ID系列的中央域控架构,中规中矩。

04.

ADAS系统

从功能性来看,e-torn上的ADAS系统为普通的L2级驾驶辅助系统,与2017版的A6/A7/A8/Q7/Q8上的完全一致,包括自适应巡航、泊车辅助、城市辅助等功能,也没啥可梳理的,直接上一张整体的架构图供大家参考吧,如图20所示。

其中G203-G206、G252-G255、G568-G717是12个超声波传感器;J1121连接为ADAS控制单元,R243-R246是360全景4个摄像头,J685为中控显示屏,J104为ESC,J794为Infotainment单元。

图20 ADAS系统架构图

05.

总结

总体而言,在当前新技术层出不穷的背景下,从技术层面来说,像e-tron这种性能车,技术都中规中矩,并没有亮眼的地方,不像国产品牌,在新技术的应用上都很激进。虽然是老品牌,在新时代,不能吃老本了。

相关推荐